T.C. ISTANBUL GEDİK UNIVERSITY INSTITUTE OF GRADUATE STUDIES

ASSESSMENT OF BUILDING INFORMATION MODELING IMPACT ON SMALL SCALE CONSTRUCTION PROJECTS

MASTER'S THESIS

Ghaith Rabeea ABDULGHANI

Engineering Management Master in English Program

AUGUST 2021

T.C. ISTANBUL GEDİK UNIVERSITY INSTITUTE OF GRADUATE STUDIES

ASSESSMENT OF BUILDING INFORMATION MODELING IMPACT ON SMALL SCALE CONSTRUCTION PROJECTS

MASTER'S THESIS

Ghaith Rabeea ABDULGHANI (191281021)

Engineering Management Master in English Program

Thesis Advisor: Asst. Prof. Dr. Ahmet GÜLLÜ

AUGUST 2021

T.C. İSTANBUL GEDİK ÜNİVERSİTESİ LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ MÜDÜRLÜĞÜ

Yüksek Lisans Tez Onay Belgesi

Enstitümüz, Engineering Management Department İngilizce Tezli Yüksek Lisans Programı (191281021) numaralı öğrencisi Ghaith Rabeea ABDULGHANI'nin "Assessment of Building Information Modeling Impact on Small Scale Construction Projects" adlı tez çalışması Enstitümüz Yönetim Kurulunun 27.08.2021 tarihinde oluşturulan jüri tarafından *Oy Birliği* ile Yüksek Lisans tezi olarak *Kabul* edilmiştir.

<u>Öğretim Üyesi Adı Soyadı</u>

Tez Savunma Tarihi : 27/08/ 2021

- 1) Tez Danışmanı: Dr. Öğr. Üyesi Ahmet GÜLLÜ (İstanbul Gedik Üniversitesi)
- 2) Jüri Üyesi: Dr. Öğr. Üyesi Gökhan KAZAR (İstanbul Gedik Üniversitesi)
- 3) Jüri Üyesi: Dr. Öğr. Üyesi Hasan ÖZKAYNAK (Beykent Üniversitesi)

DECLARATION

I, Ghaith Rabeea ABDULGHANI, do hereby declare that this thesis titled as "Assessment of Building Information Modeling Impact on Small Scale Construction Projects" is original work done by me for the award of the masters degree in the faculty of Engineering Management. I also declare that this thesis or any part of it has not been submitted and presented for any other degree or research paper in any other university or institution. (27/08/2021)

Ghaith Rabeea ABDULGHANI

DEDICATION

I dedicate this work To my family who always supported me To my friends and people I love

PREFACE

I would like to express my special thanks of gratitude to every single person who have helped me to do this work, especially my thesis advisor Asst. Prof. Dr. Ahmet Gullu. I also appreciate the effort of all lecturers who taught me in my educational journey.

August 2021

Ghaith Rabeeea ABDULGHANI

TABLE OF CONTENT

F)_	a	Δ
I	a	g	e

PREFACE	
TABLE OF CONTENT	vi
ABBREVIATIONS	iii
LIST OF TABLES	ix
LIST OF FIGURES	
ABSTRACT	xii
ÖZETx	
1. INTRODUCTION	
1.1 Introduction	
1.2 Problem Statement	
1.3 Objective and Aim of Research	.2
1.4 Organization of Thesis	
2. LITERATURE REVIEW	.4
2.1 Building Information Modeling (BIM)	.4
2.2 Definition of BIM	.4
2.3 Historical Development of BIM	. 5
2.4 How BIM Used	. 5
2.5 Programs Used BIM Technology	.6
2.6 The Most Used Programs in the Sector	
2.7 Adoption of BIM In Construction Projects	
2.8 Benefits of Building Information Modeling (BIM)	
3. CASE STUDY	
3.1 About case study	12
3.2 Reasons behind Choosing the Case Study	
3.3 Barriers of the Case study	
3.4 Creating the 3D Model of the Case Study Using Autodesk Revit Program	
3.4.1 User interface	
3.4.2 Creating axes and grids	
3.4.3 Creating Raft foundation	
3.4.4 Creating columns	
3.4.5 Creating beams	
3.4.6 Creating slabs	
3.4.7 Creating stairs	
3.4.8 Creating walls	
3.4.9 Creating finishes	20
4. RESULTS AND DISCUSSIONS	
4.1 Extracting Drawings	
4.2 Preparing Bills of Quantities From Revit Program	
4.3 Comparison Schedules	
	+0

5. CONCLUSIONS AND RECOMMENDATIONS	55
REFERENCES	58
APPENDICES	61
RESUME	76

ABBREVIATIONS

1ST.F	: First Floor
2 D	: 2 Dimensional
2ND.F	: Second Floor
3D	: 3 Dimensional
3RD.F	: Third Floor
5D	: 5 Dimensional
AGC	: Associated General Contractors of America
BIM	: Building Information Modelling
BOQ	: Bills of Quantities
CAD	: Computer-Aided Design and Drafting
DPC	: Damping proof concrete
G.F	: Ground Floor
IPD	: Integrated Project Delivery
IQD	: Iraqi Dinar
NBIM	: USA National Building Information Model Standard Project Committee
QS	: Quantity Surveying

LIST OF TABLES

|--|

Table 2.1: BIM Tools	7
Table 2.2: BIM Construction Management Tools	8
Table 4.1: Blinding and Raft Foundation's Concrete Quantities	. 26
Table 4.2: Raft Foundation's Rebar Details & Quantities	
Table 4.3: Ground Floor's Column Schedule & Concrete Quantity	. 27
Table 4.4: First Floor's Column Schedule & Concrete Quantity	
Table 4.5: Second Floor's Column Schedule & Concrete Quantity	. 27
Table 4.6: Third Floor's Column Schedule & Concrete Quantity	. 27
Table 4.7: Ground Floor's Column Rebar Schedule	. 28
Table 4.8: First Floor's Column Rebar Schedule	. 28
Table 4.9: Second Floor's Column Rebar Schedule	. 28
Table 4.10: Third Floor's Column Rebar Schedule	. 29
Table 4.11: Ground Floor's Slab Concrete and Formwork Schedule	. 29
Table 4.12: First Floor's Slab Concrete and Formwork Schedule	. 29
Table 4.13: Second Floor's Slab Concrete and Formwork Schedule	. 29
Table 4.14: Third Floor's Slab Concrete and Formwork Schedule	. 30
Table 4.15: Ground Floor's Beams Concrete & Formwork Schedule	. 30
Table 4.16: First Floor's Beams Concrete & Formwork Schedule	. 30
Table 4.17: Second Floor's Beams Concrete & Formwork Schedule	. 30
Table 4.18: Third Floor's Beams Concrete & Formwork Schedule	. 31
Table 4.19: Ground Floor's Parapets Concrete & Formwork Schedule	. 31
Table 4.20: First Floor's Parapets Concrete & Formwork Schedule	. 31
Table 4.21: Second Floor's Parapets Concrete & Formwork Schedule	. 31
Table 4.22: Third Floor's Parapets Concrete & Formwork Schedule	
Table 4.23: Stairs Material Takeoff	. 32
Table 4.24: Ground Floor's Slab, Beams & Stair Rebar Schedule	. 32
Table 4.25: First Floor's Slab, Beams & Stair Rebar Schedule	. 33
Table 4.26: Second Floor's Slab, Beams & Stair Rebar Schedule	. 33
Table 4.27: Third Floor's Slab & Beams Rebar Schedule	. 33
Table 4.28: DPC Schedule	. 33
Table 4.29: Ground Floor's Brick Wall Schedule	
Table 4.30: First Floor's Brick Wall Schedule	
Table 4.31: Second Floor's Brick Wall Schedule	. 34
Table 4.32: Third Floor's Brick Wall Schedule	
Table 4.33: Roof Isolation Schedule	
Table 4.34: Plaster and Facade Marble Schedule	. 35
Table 4.35: Facade Sweep Schedule	
Table 4.36: Facade Window Sweep Schedule	
Table 4.37: Wall Gypsum Plastering Schedule	
Table 4.38: Roof Gypsum Plastering Schedule	
Table 4.39: Floor Marble Schedule	. 38

Table 4.40: Floor Porcelain Schedule	
Table 4.41: Wall Ceramic Schedule	
Table 4.42: Wall Paint Schedule	
Table 4.43: Roof Paint Schedule	
Table 4.44: Marble Skirting Schedule	
Table 4.45: Porcelain Skirting Schedule	
Table 4.46: Door's Schedule	
Table 4.47: Railing Schedule	
Table 4.48: Aluminum Windows Schedule	
Table 4.49: Windows Protection Schedule	
Table 4.50: Material and Cost Comparison (For Main Structure)	
Table 4.51: Material and Cost Comparison (For Finishing)	
Table B.1: Tender and Bills of Quantities (Main Structure)	
Table B.2: Tender and Bills of Quantities (Finishing)	

LIST OF FIGURES

Figure 2.3: Ratios of Market Share of BIM Tools Which are used by Construction	on
Firms	9
Figure 2.4: Worldwide BIM Adoption Levels	10
Figure 3.1: User Interface	14
Figure 3.2: Grids and Levels	15
Figure 3.3: Blinding and Reinforced Raft Foundation	15
Figure 3.4: Placement of Steel Rebars for Columns	16
Figure 3.5: Structure of the Building after Placement of Beams	17
Figure 3.6: Placement of Steel Rebars For Beams	
Figure 3.7: Building's Structure After Creating Slabs	18
Figure 3.8: Reinforcement of Floors	
Figure 3.9: Stairs Connecting Between Floors	19
Figure 3.10: The Building After Creating Walls, Doors and Windows	20
Figure 4.1: Structural Drawing For Level 0 (Ground Floor)	21
Figure 4.2: Structural Drawing For Level 1 and 2 (First and Second Floor)	
Figure 4.3: Structural Drawing For Level 3 (Third Floor)	22
Figure 4.4: Structural Side Views of the Building	23
Figure 4.5: Cross Section For Stair Details	
Figure 4.6: Level 0 (Ground Floor Plan)	24
Figure 4.7: Level 1 (First Floor Plan)	25
Figure 4.8: Level 3 (Third Floor Plan)	25
Figure 4.9: Concrete Material Takeoff	
Figure 4.10: Rebar Material Takeoff	47
Figure 4.11: Formwork Area	
Figure 4.12: Brick Wall Material Takeoff	49
Figure 4.13: Plastering and Gypsum Plastering Material Takeoff	50
Figure 4.14: Marble, Porcelain and Aluminum Windows Material Takeoff	51
Figure 4.15: Facade Marble Sweep, Skirting and Aluminum Railing Material	
Takeoff	51
Figure 4.16: Ceramic Material Takeoff	
Figure 4.17: Price of Categories Revit vs. Tender (For Finishing)	52
Figure 4.18: Price of Categories Revit vs. Tender (For Main Structure)	53
Figure 4.19: Estimated Total Price Revit Vs. Tender	54
Figure A.1: Ground Floor's CAD Drawing	61
Figure A.2: First Floor's CAD Drawing	
Figure A.3: Second Floor's CAD Drawing	62
Figure A.4: Third Floor's CAD Drawing	

ASSESSMENT OF BUILDING INFORMATION MODELING IMPACT ON SMALL SCALE CONSTRUCTION PROJECTS

ABSTRACT

While time passes and life changes, the development of technology is taking place in every part of our life quickly, also it affects daily life. it creates new tools, procedures, and methods for all sectors, and simplifies many operations. Nowadays, design tools that depend on computers have been used in the construction industry, it has a direct effect on the whole project life, and it has made a revolution in the construction sector. Building information modeling (BIM) simply refers to the development of a building model generated by using the computer, that model is rich of data, object-oriented, smart and also a parametric digital representation of the building.

This research discusses the assessment of BIM impact for the small scale construction industry, it mainly focuses on quantity takeoff and accuracy of projects, firstly it presents the definition and the main concept of BIM. Then, a case study of a 3-storey building project in Baghdad is done to evaluate the effect of BIM quantity takeoff, tendering, and other effects on the project, Autodesk Revit 2020 software has been used to create the model of the building. The results showed that BIM can provide easy, detailed and sufficient drawings and the quantities and prices were extracted and compared with the quantities and prices that have been calculated with traditional ways, Revit calculation have reduced the total estimated cost by 4% compared to the total tender estimated cost, 6% for finishing estimated cost, and nearly no change in structure price.

Keywords: Building information modeling, Cost Management, quantity takeoff.

KÜÇÜK ÖLÇEKLİ İNŞAAT PROJELERİNDE YAPI BİLGİ MODELLEMESİ ETKİLERİNİN DEĞERLENDİRİLMESİ

ÖZET

Zaman geçtikçe ve hayat değişirken teknolojinin gelişimi hayatımızın her alanında hızla yer almakta, günlük hayatı da etkilemektedir. tüm sektörler için yeni araçlar, prosedürler ve yöntemler oluşturur ve birçok işlemi basitleştirir. Günümüzde inşaat sektöründe bilgisayara bağlı tasarım araçları kullanılmaya başlanmış, tüm proje ömrüne doğrudan etki etmiş ve inşaat sektöründe bir devrim yapmıştır. Yapı bilgi modellemesi (YBM), basitçe bilgisayar kullanılarak oluşturulan bir bina modelinin geliştirilmesini ifade eder, bu model veri açısından zengin, nesne yönelimli, akıllı ve ayrıca binanın parametrik dijital bir temsilidir.

Bu Araştırma, küçük ölçekli inşaat sektörü için YBM etkisinin değerlendirilmesini tartışmakta, esas olarak projelerin miktar ve doğruluğuna odaklanmakta, öncelikle BIM'in tanımın ve ana kavramını sunmaktadır. Daha sonra, YBM metraj, ihale ve diğer etkilerin proje üzerindeki etkisini değerlendirmek için Bağdat'ta 3 katlı bir bina projesinin örnek olay incelemesi yapılmış, binanın modelini oluşturmak için Autodesk Revit 2020 yazılımı kullanılmıştır. Sonuçlar, YBM'in kolay, detaylı ve yeterli çizimler sağlayabildiğini göstermiş ve miktarlar ve fiyatlar çıkarılarak geleneksel yöntemlerle hesaplanan miktar ve fiyatlar ile karşılaştırıldığında, Revit hesaplaması toplam tahmini maliyeti toplam maliyete göre %4 oranında azaltmıştır. ihale tahmini maliyeti, bitirme tahmini maliyeti için %6 ve yapı fiyatında neredeyse hiç değişiklik yok.

Anahtar Kelimeler: Yapı bilgi modellemesi, Maliyet Yönetimi, Metraj alımı

1. INTRODUCTION

1.1 Introduction

while time passes and life changes, the development of technology is taking place in every part of our life quickly, also it effects daily life. it creates new tools, procedures, and methods for all sectors, and simplifies many operations. exceptionally, computers play the main role in every sector, in every level. In the past, Computers which were used for finding solutions for different problems (general and limited), nowadays are used to do more hard and complicated tasks, producing and analyzing different types of data. Today, design tools that depends on computers have been used in construction industry, it has a direct effect on the whole project life, and it have made a revolution in the construction sector.

Building information modeling (BIM) simply refers to the development of a building model generated by using the computer, that model is rich of data, object-oriented, smart and also a parametric digital representation of the building, which provides views, plans, and data convenient for different needs of users, it can be obtained easily and analyzed to get information that can help with making decisions and improving the operation of delivering the project (AGC, 2005).

One of the main differences between BIM 3D and 2D CAD is that 2D CAD represents the project by separated and independent drafts, such as plans, elevations and sections. When it is required to edit one of those drafts, all other drafts in the project must be checked to see the effect of editing on them, that process usually causes many faults and interactions between drafts, and quantities must be also checked. In addition, in 2D drafts, data are graphical elements only, such as lines, rectangles, arcs and circles, while in 3D BIM models, objects are smart elements and defined as walls, beams, columns, and slabs (CRC Construction Innovation, 2007).

1.2 Problem Statement

Stakeholders are seeking to achieve mainly 3 goals in every project they want to publish, these goals are low cost, short time, and high quality. Most of the errors that occurs during the construction period are due to interferes in the drawings, for example the interferes between architectural and structural drawings, or missunderstanding of those drawings. That may cause change orders during construction period, and hence it will cause increasing in the expected time and the cost of the project, some of those errors can be totally corrected, but other errors will leave some bad impress in the construction and cannot solved 100%, and of course that will be considered as a reduction in quality. In addition, some stakeholders still have problems in quantity surveying, when it is calculated less than the actual quantity it will cause increasing of the estimated cost of the project, traditional methods for calculation are not accurate, also it takes several days for preparing it.

BIM creates a model for the whole project, which will reduce the errors, all interferes can be corrected during design phase and that will save time and cost also it may keep the quality up. For QS BIM can generate quantity schedules automatically without using other programs, also it is supposed to be more accurate than traditional methods.

1.3 Objective and Aim of Research

The main purpose of this research is to evaluate the impact of implementation BIM technology on small scale projects, trying to solve drawings interferes and missing drawings problems. The research will mainly focus on QS and cost management of the project. A case study will be applied for an existing 3 story building, it will be Re-designed by a BIM software (Autodesk Revit 2020), the quantities will be re calculated and the results will be discussed. This thesis aims to redirect the attention and increase the awareness of companies that deals with small projects.

1.4 Organization of Thesis

this research contains Five chapters, it is organized as the following:

chapter one "introduction" it contains an introduction of the research, it explains the statement of the problem, objective and aim of research, and finally research organization (structure of research).

Chapter two "literature review" this chapter shows the literature part of the thesis, it contains a background about BIM, definition of BIM, historical development, the softwares used, adoption and application of BIM.

Chapter three "case study" this chapter includes introduction describes the case study, reasons and barriers behind choosing the case study, and creating the 3 - D model of the building using Autodesk Revit software.

Chapter four "Results and discussion" this chapter deals with extracting drawings, preparing bills of quantities from Autodesk Revit software, comparing schedules, and discussion of the results.

Chapter five "conclusion" this chapter introduces the conclusions of the thesis, future studies will also be discussed.

2. LITERATURE REVIEW

2.1 Building Information Modeling (BIM)

The emerging of building information modelling (BIM) gives opportunities to penetrate the limitations of traditional buildings like weary modeling, model conflicts, and high cost implementation, and supports BIM into the process of digital building design.

Building information modeling methodology is one of the most current in building & construction sector. It is a merged system which contains everything relative to the project and place it in one template. It is appreciated as a main data base which provides all project parts and it has project documents, whether they were plans, quantity schedules, or time tables for the applying of project work. It provides users with accurate, coordinated and available information during the project phases and collects the necessary functions to complete the building through an electronic virtual model that simulates reality. These systems have become widely used by the parties to the project during its life cycle, such as owners, designers, contractors and project managers

For allowing the thesis to achieve it's objective, BIM concept must be prehended very well. Therefore, deep research on BIM should be provided in this part of the thesis.

2.2 Definition of BIM

The Associated General Contractors of America (AGC) defined BIM as the following: "Building Information Modelling (BIM) is the development and use of a computer software model to simulate the construction and operation of a facility". The resulted model which is a building information model, is rich of data, intelligent, object-oriented and provides a parametric digital representation of the project, which provides data that is convenient to different users' needs. BIM technology can also be used to obtain and analyze information to enhance decision making and the

process of delivering the facility. USA National Building Information Model Standard Project Committee (NBIM) provides the following definition: "Building Information Modeling (BIM) is a digital representative of the physical and functional properties of a plant. BIM is a common information source which creates a reliable basic for the decisions being taken for a plant during its lifecycle; is valid starting from the decision for the construction until the end of the demolition (NBIMS, 2016)".

2.3 Historical Development of BIM

During the past decades, construction sector increased the interest in using twodimensional building information models (2D-BIM), because it has many benefits during design phase, planning phase and during the construction of new buildings. The development of 3D modeling began in the 1970s, related with the early computer-based design (CAD) which covered several industries. At the time that many industries provided integrated analysis tools and object-based parametric modeling (which is being the basic concept of BIM), construction sector took a lot of time to the conventional 2D design. BIM modeling was implemented in empiricist projects in the early 2000s. In order to enhance building design of engineers and architects. The major research trends focused on enhancement of design, planning, interference detection, 3-D visualization, bills of quantities, cost and data management. After a while, specialized tools of design for architecture and engineering major joined the basic implementation, such as structural analysis, energy analysis, scheduling and progress tracking. The use of BIM focuses on preplanning, design, construction and integrated project delivery of buildings and other facilities, however lately, researches focus expands from the stage of earlier life cycle (LC) stages to maintenance, deconstruction, refurbishment, and end-of-life concepts especially in complex structures.

2.4 How BIM Used

According to some recent surveys, building information modelling BIM is adequate for big scale and complex buildings and used by the respondents those surveys in residential, commercial, , educational, healthcare and many other building types. Because of that less than 10% of the respondents are owners, facility managers, or deconstructors, these trends do not necessarily represent the current use of BIM in existing buildings. Despite the fact that BIM application needs deep process changes of the implicated parties, in new construction projects of both private and institutional owners, the benefits are diversified and often being satisfied the involved stakeholders. Major benefits consist in design consistency and visualization, cost estimations, clash detection, implementation of lean construction or improved stakeholder collaboration. Major challenges in new buildings refer to change from design bid- build processes to integrated project delivery (IPD) and to the increased time effort and knowledge required for BIM use. However, BIM application in existing buildings stand up for other qualifications and challenges. Prospective advantages of using BIM in FM tend to be very worthy e.g., as valuable 'as-built' (heritage) documentation, maintenance of warranty and service information quality control, assessment and monitoring, energy and space management, emergency management, or retrofit planning. Decontamination or deconstruction processes could also benefit from structured up-to-date building information to reduce errors and financial risk, e.g., through deconstruction scheduling and sequencing, cost calculation, rubble management, optimization of deconstruction progress tracking or data management. many types of information are important to manage a facility or to proceed retrofit measures in buildings.

2.5 Programs Used BIM Technology

There are many Building Information Tools available in the software market. Some of the BIM tools are listed in the table below. In Table 2.1 Mechanical, Electrical, Plumbing, Structural, Architectural and Site Work 3D modeling software programs are listed

Product Name	Manufacturer	Primary Function
Cadpipe HVAC	AEC Design	3D HVAC Modeling
	group	
Revit Architecture	Autodesk	3D Architectural Modelling and
		parametric design
AutoCAD Architecture	Autodesk	3D Architectural Modelling and
		parametric design
Revit structure	Autodesk	3D structure Modelling and parametric
		design
Revit MEP	Autodesk	3D Detailed MEP Modelling
AutoCAD Civil 3D	Autodesk	Site Development
Cadpipe commercial pipe	AEC Design Group	3D pipe Modelling
Dprofiler	Beck Technology	3D Conceptual modelling with real time cost
		estimating
Bently BIM suite (Micro	Bently Systems	3D Architectural, Structural, Mechanical,
station, Bently		Electrical and Generative components
Architecture, Structural,		Modeling
Mechanical, Electrical,		
Generetive Design)		
Fastrak	CSC (UK)	3D Structural Modelling
SDS/2	Design Data	3D Detailed Structural Modelling
Fabrication for AutoCAD MEP	East Coast CAD/CAM	3D Detailed MEP Modelling
Digital Project	Gehry	CATIA based BIM system for Architectural,
Digital Project	Technologies	Design, Engineering and Construction
	reennoiogies	Modelling
Digital Project MEP System	Gehry	MEP Design
Routing	Technologies	
ArchiCAD	Graphisoft	3D Architectural Modelling
MEP Modeler	Graphisoft	3D MEP Modelling
hydraCAD	Hydratec	3D Fire Sprinkler Design and Modelling
AutoSPRINK VR	M.E.P. CAD	3D Fire Sprinkler Design and Modelling
FireCAD	Mc4 Software	Fire piping Network Design and Modelling
CAD-Duct	Micro Application	3D Detailed MEP Modelling
Vectorworks Designer	Nemetschek	3D architectural Modelling
Duct Designer 3D, Pipe	QuickPen	3D Detailed MEP Mdelling
Designer 3D	Internation	
RISA	RISA Technologies	Full suite 2D and 3D structural design
Tabla atmusture	Tabla	Applications
Tekla structure	Tekla	3D Detailed Structural Modelling
Affinity	Trelligence	3D Model Applications for Early Concept Design
Vico Office	Vico Software	5D Modelling Which can be used to
	VICU JUILWale	generate cost and schedule data
Power Civil	Bently systems	Site Development
Site Design, Site Planning	Eagle Poing	Site Development

There are number of BIM software for scheduling, clash detection, coordination and planning of the construction projects. Some of the BIM software's are listed in Table

2.2 and their use are brie y explained. There are also integration programs such as Innovaya and Synchor. These integration programs are a bridge between the 3D model of the project and the scheduling programs (MS Project, Primavera). In addition, Vico is powerful BIM software which has tools for 5D modeling.

Product Name	Manufacture	BIM Use
Navisworks Manage,	Autodesk	Clash Detection scheduling
Navisworks scheduling		
Project wise	Bent <mark>l</mark> y	Clash Detection scheduling
Digital Project Designer	Gehry Technologies	Model Coordination
Visual Simulation	Innovaya	Scheduling
Solibri Model Checker	Solibri	Spatial Coordination
Synchro	Synchro Ltd.	Planning & Scheduling
Tekla Structures	Tekla	Structure-centric Model Schedule
		Driven Link
Vico Office	Vico Software	Coordinate Scheduling Estimation

 Table 2.2: BIM Construction Management Tools

2.6 The Most Used Programs in the Sector

A survey undertaked by Burcin and Samara, 2010, of 424 construction indicates that different BIM tools have already been adopted in construction industry. Figure 2.1 states the market portion of different BIM tools which are used by those 424 constructions. Autodesk BIM tools are the most widely used BIM solutions in U.S with 54% of those construction using them; Graphisoft Archi CADTM follows with 10.7% and Bentley BIM tools with 8%. Tekla and Vico BIM tools are utilized by 6.5% and 5.8% of the construction based on the survey. The other software tools such as Innovaya TM, Dprofiler TM, Vectorworks TM, etc. are also being utilized by a small portion of the construction. The software tools have been used in different phases during the project lifecycle such as Preliminary Design and Feasibility Study, Shop Drawing and Fabrication, Estimating, Scheduling, and File Sharing & Collaboration. The purchase of the software package is different from regular purchases, since the buyers need to consider the capabilities of each software tool in the package. This section provides general information about BIM software packages which are widely adopted by users.

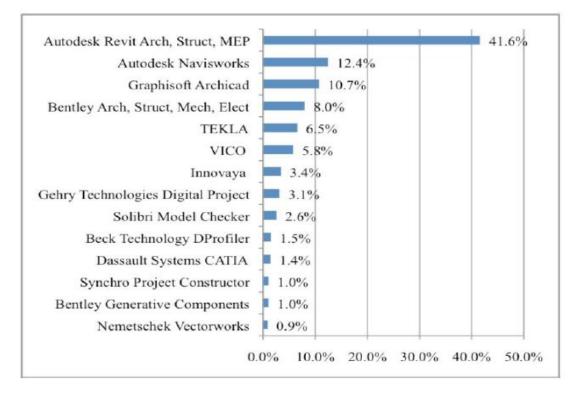


Figure 2.1: Ratios of Market Share of BIM Tools Which are used by Construction Firms

2.7 Adoption of BIM In Construction Projects

There are different degrees of development and in some countries, it is mandatory and BIM guidelines are available (Figure 2.2), whereas in others BIM is not promoted. Over the past six to seven years many pilots and live projects have been completed and documented in Finland, USA, Denmark, Singapore, and UK, which demonstrated the capability of using BIM within the construction process facilitating construction lifecycle. Many ongoing projects have been proven to develop more environmentally sustainable products, compared to non-BIM based projects. The present situation of Turkey, Australia, Canada, China, Denmark, Estonia, Finland, Germany, Hong Kong, Iceland, India, Ireland, Italy, Netherlands, New Zealand, Nigeria, Norway, Singapore, South Korea, Spain, Sweden, Taiwan, United Arab Emirates, United Kingdom and USA is described below. Moreover, the limitations and possibilities of BIM development in public contexts are discussed.

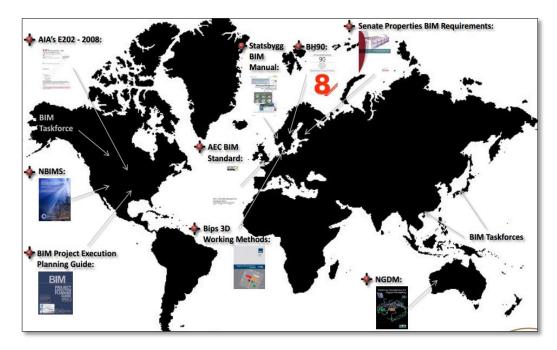


Figure 2.2: Worldwide BIM Adoption Levels.

2.8 Benefits of Building Information Modeling (BIM)

- 3-D visualization: Architectural 3-D rendering can be easily made with BIM.
- Shop drawings generating: shop drawings can be quickly and easily generated for different plans, sections and other parameters.
- Maintenance of buildings: BIM can be applied for renovation and maintenance of buildings.
- Material and cost estimating: Materials and cost estimating can be done with BIM softwares automatically and very quickly. In addition, when changing any part of the model, materials extracted and changed immediately.
- Interference detection: It is one of the most useful features of BIM. To make certain that no elements intersect with each other, all main systems and elements can be visually checked for interference.
- Structural Analytical model: Since BIM-based model has intelligent objects, it can be exported to other analytical softwares, for example, Autodesk Revit has analytical model feature.

- Reducing the time of project delivery: Stanford University center for integrated facilities engineering (CIFE) indicates that BIM can reduce project time up to 7%.
- Team work-friendly: Some BIM softwares like Autodesk Revit have the feature of "work set" which allows different users to have the access to the same model and also edit it if they have been given the authority to. however, every edit is recorded according to the user who has made it. This can help architects, structural, mechanical, and electrical designers to work in one platform, and that can save time and minimize the conflicts.

3. CASE STUDY

3.1 About case study

The case study which was selected is a 3-storey building located in south Baghdad, it consists of small shops and residential flats.

The project can be summarized by the following: -

The total area of the land was (535m2) while actual construction area of the ground floor was (476m2)

Ground floor includes 6 small shops and 3 residential flats.

The first floor includes 4 residential flats with balconies, with a total area of (476m2).

The second floor is completely typical with the first floor.

The land is located in a corner of 2 streets (main street and branch street).

Third floor is a service floor includes a small store and a space with access to the roof, the total area is (59m2).

The building has one entrance (for the flats) without elevator.

The construction system is a concrete column-girder-slab, with non-bearing walls.

The project was assigned to a local contracting company, the estimated cost was 679942000 IQD.

3.2 Reasons behind Choosing the Case Study

- 1. The project is belongs to the private sector and owned by individual person (investor).
- 2. That type of buildings is very common and plenty of buildings have a similar design and contracting concept in that Area.

- 3. Many documents are missing due to transferring from architect to the owner and then to the contractor.
- 4. It contains small and narrow areas of rooms and facilities which are generally consist of plenty of conflicts.

3.3 Barriers of the Case study

The project designs that were obtained from the contractor (which were sent by mail in pdf. and dwg. Format) was not clear and a lot of documents are missing.

The other documents of the project (BOQ and the actual quantities) were given but it covers only some parts of the project, some parts are left as a blank in the tables, other information are not even mentioned.

The structural designs were missing, however only the diameters of bars, spacing and grade of concrete was mentioned in the BOQ.

The project didn't start yet, so the actual quantities of the building is not available, also errors and conflicts are not available.

These barriers are common in a lot of projects, and therefore the need of another solution is increasing, one of these solutions is the implementation of building information modelling (BIM).

3.4 Creating the 3D Model of the Case Study Using Autodesk Revit Program

Data obtained from the contracting company were 2-D drawings created by AutoCAD program, and Tender contains bills of quantities with some information. however, the Drawings were very simple and lack for data required to deal with it, also some necessary drawings are missing.

In this section, Data-rich building information model will be created according to those drawings and information provided in the BOQ. Creation of model will start with creating grids and axes, raft foundation, columns, slabs, stairs, steel rebars, walls, doors, windows, and finishes.

3.4.1 User interface

The interface of Autodesk Revit program is very simple, easy and understandable for all kind of users, it consists of many categories which appears just after opening new or existing project, those categories are collected together to provide the users with the needed tools to create the building information model, the user interface simply consist of Application Menu, Quick access toolbar, Ribbon: tabs, Ribbon: Tools, info center, option bar, project browser, properties, elevation tag, drawing window, status bar, view control bar, and navigation bar.

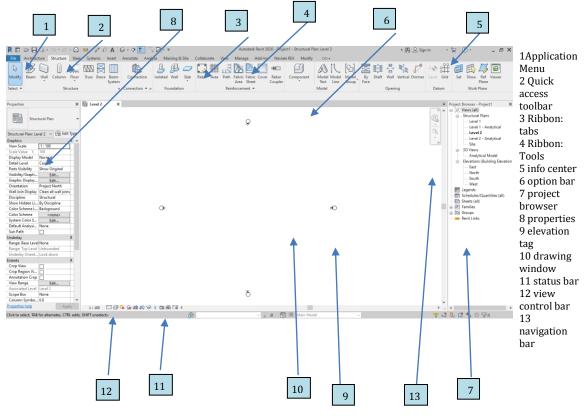


Figure 3.1: User Interface

3.4.2 Creating axes and grids

After opening structural template, units have been fitted, 10 vertical, 6 horizontal axes, and 7 levels has been created. Axes can be locked to avoid moving it by mistake, also some categories like columns or walls can be linked to it, levels are created according to top level of blinding, foundation, and floor slabs.

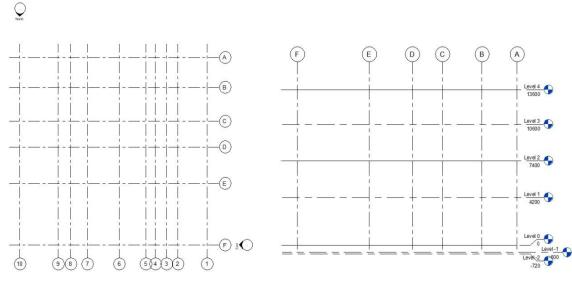


Figure 3.2: Grids and Levels

3.4.3 Creating Raft foundation

A 12 cm concrete blinding was applied for the whole land area, also Raft foundation with thickness of 60 cm was created within the building area, two layers reinforcement was also placed with diameter of 16mm and spacing of 250 mm, both layers, each direction. Reinforcement was created automatically with "Area reinforcement" tool, only by simple steps, like determining the borders of reinforcement area, number of layers, number of directions, hooks, bar diameters and spacings.

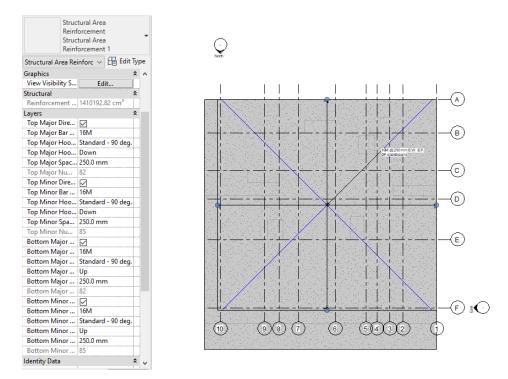


Figure 3.3: Blinding and Reinforced Raft Foundation

3.4.4 Creating columns

Total number of columns is 131 columns in this project was rectangular with dimensions of (300*600). however, 2 columns were (300*300), ground floor consists of 41 columns, first and second floor consist of 80 columns (40 for each floor), and the last floor had 10 columns.

After placement of columns, steel reinforcement have been placed using special extension "Naviate REX", this extension allows users to create reinforcement for different kinds of structural members by entering bar diameter, number of bars, stirrups diameter and distribution and type of end-bending, also dowels length can be determined. steel Reinforcement was placed with the same amount as mentioned in BOQ that was given by the company.

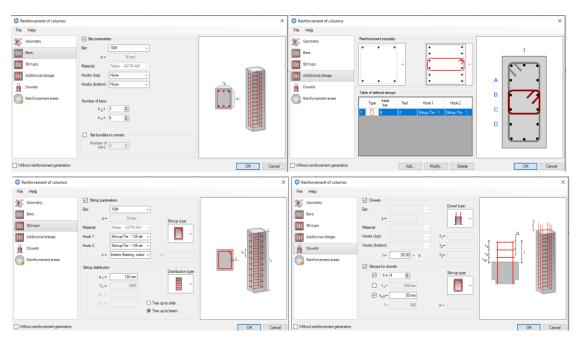


Figure 3.4: Placement of Steel Rebars for Columns

3.4.5 Creating beams

Beams had been created by selecting structural concrete beams with dimensions of (300*600mm) for the main beams, inverted beams was (200*400mm) for balcony parapets, also beams of the roof was (300*800mm) as a the top 200mm was considered as a parapet. Fig (3.5) shows the structure of the building after placement of beams.

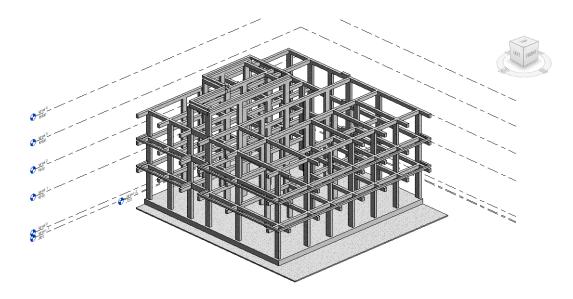


Figure 3.5: Structure of the Building after Placement of Beams

After creating of beams, steel rebars was placed, with the use of "naviate REX" extension which was mentioned before. Fig (3.6) shows the placement of steel rebars for beams.



Figure 3.6: Placement of Steel Rebars For Beams

3.4.6 Creating slabs

A 20 cm thickness concrete slabs were created for level 1,2,3 and 4, level 1,2 and 3 were typical slabs while level 4 was different slab area. Fig (3.7) shows the building's structure after creating slabs.

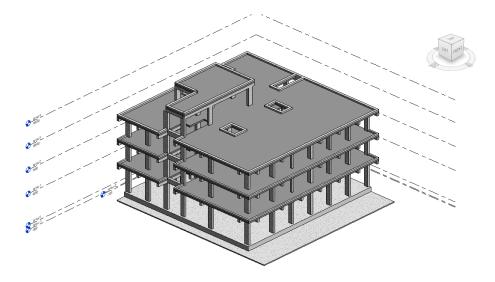


Figure 3.7: Building's Structure After Creating Slabs

After that, steel reinforcement had been placed by using "structural area reinforcement" tool, as mentioned in BOQ floor reinforcement details was: two layers 12mm rebars with spacing of 200mm each direction. Fig (3.8) shows the reinforcement of floors.

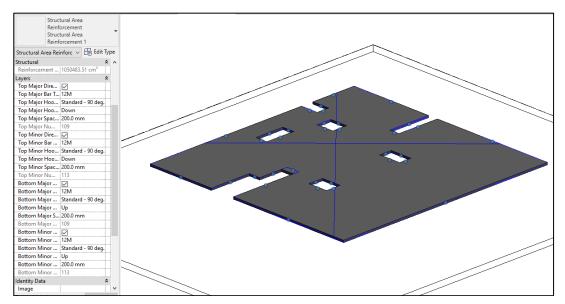


Figure 3.8: Reinforcement of Floors

one of the advantages to mention is that when floors created, Revit program have recognized it as a structural member not just a shape, therefore the intersection between slab and beams was taken into consideration, slab and beams was automatically joined, so that the intersection volume will not be calculated twice in any type of calculation like quantity schedules, this is one of the benefits of using building information modeling.

3.4.7 Creating stairs

As the building had 3 floors, it contains 3 stairs, the stair from level 0 to level 1 was different in number of rises from the other 2 stairs because of the difference of height between levels.

While creating stairs, railings was automatically placed to fit the stair, the profile of railings can also be edited.

After creating stairs, steel reinforcement was placed using 12mm rebars with 120mm spacing. Fig (3.9) shows the stairs connecting between floors.

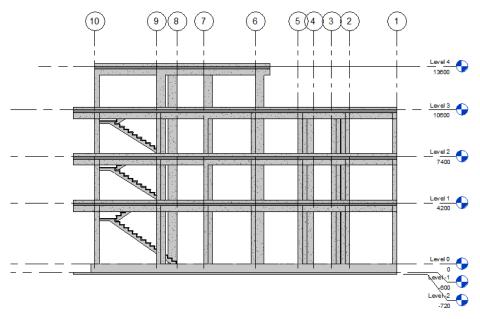


Figure 3.9: Stairs Connecting Between Floors

3.4.8 Creating walls

Walls with thickness of 25 and 12 cm was placed in the proper locations and directions, while creating the core of the walls, finishing layers with different materials and thicknesses was added to the wall cores so that it will simulate it and take it into consideration wile extracting material takeoff schedules.

The height of ground floor's walls was 3.85m in the places without beams and 3.45m in the places located under the beams, while in the first and second floor (level 1 and 2) it was 3m up to the bottom of the roof and 2.6 up to the bottom of the beams. in the last floor (level 3) it was 2.8 up to the bottom of the roof and 2.4 up to the bottom of the beams. Fig (3.10) shows the building after creating walls, doors and windows.

After creating walls, windows with different types were placed to the walls, each type created separately and the values of width, height and sill height was entered, after that by selecting the required type and click on the required place of the wall from level 0,1,2 or 3 the window can be placed.

Doors were also placed in the same way of window placing, from architect/ door, then select or create the type, the width and height is entered in each type, (900x2200), (1000x2200), (1100x2700), and (2000x2700) mm.

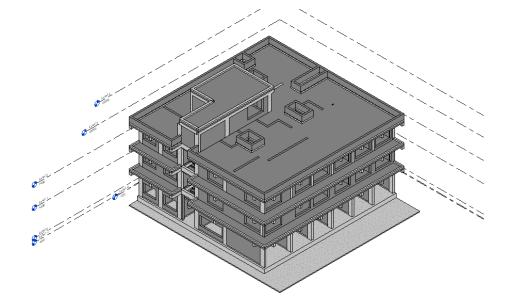
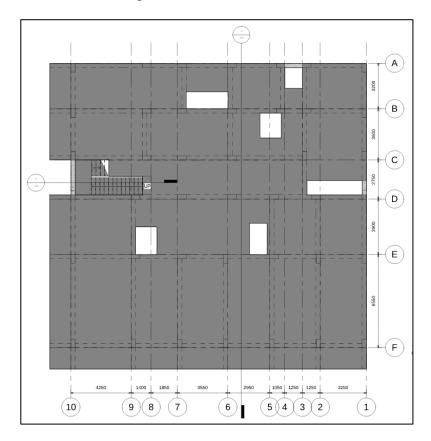


Figure 3.10: The Building After Creating Walls, Doors and Windows

3.4.9 Creating finishes


Some finishes of the building were placed with walls as layers including plastering, gypsum plastering, ceramic, paint, facade sweep, and facade marble. The rest finishing materials were placed by placing material as paint to the required faces like beams or columns so that in schedules it can calculate the paint area of that material. Also, by using "Room & Area" features it gives the area and perimeter of each room closed by 4 walls, the name of every room was given so that it can be used in scheduling by sorting and filtering the rooms by name, it helps scheduling roof gypsum plaster of rooms, paint, floor tiles, skirting, and roof isolation.

4. RESULTS AND DISCUSSIONS

After creating the model depending on the information and

4.1 Extracting Drawings

The drawings given by the company was lacking for information, also some necessary drawings were missing. In this part, drawings like floor plans, elevation views, and sections have been provided.

Figure 4.1: Structural Drawing For Level 0 (Ground Floor) Structural drawings for each level.

Structural drawings, which include floors, stairs, columns and beam's locations, can be extracted from Revit program easily by just selecting the required level and editing the visibility and graphics from properties to filter drawing's categories, also from properties, the view range might need to be edited to view some required details. Figure (4.1), (4.2) and (4.3) shows the structural drawings for ground, first, second, and third floor respectively.

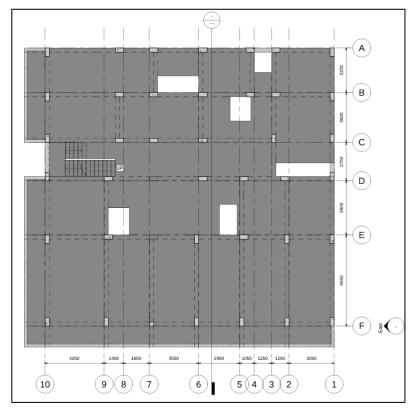


Figure 4.2: Structural Drawing For Level 1 and 2 (First and Second Floor)

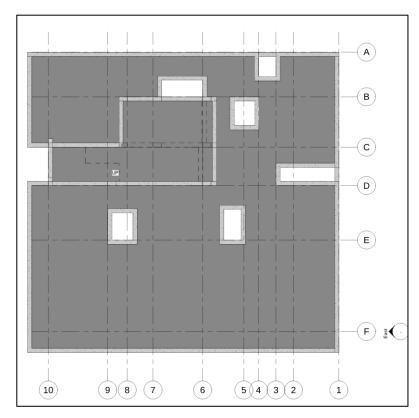


Figure 4.3: Structural Drawing For Level 3 (Third Floor)

Side views of the structure are also important to understand the structural drawing's concept deeply. In the Cad – based drawings that have been provided with the project documents, no side views or sections are provided. In Revit program, side views from north, east, south, and west are automatically created without having to draw them, figure (4.4) shows the lateral side views of the building from 4 sides.

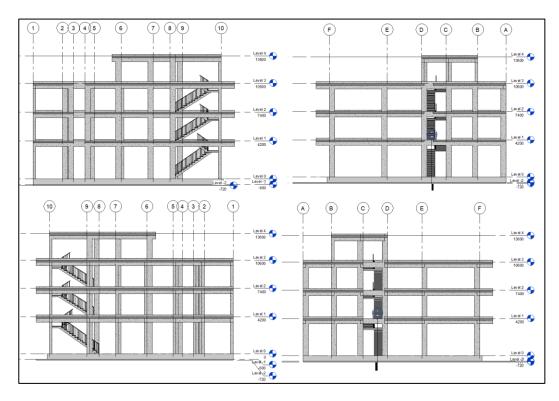


Figure 4.4: Structural Side Views of the Building

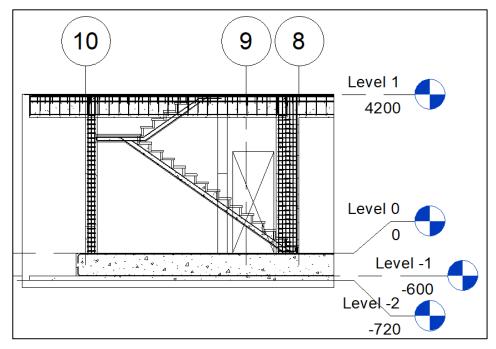


Figure 4.5: Cross Section For Stair Details

Sections can also be provided for any plan in the view, from view/ sections/ new section can be dragged to the plan and by click "go to section" the cross section can be shown with the required level of detail, figure (4.5) shows cross section for stair with rebar.

Drawings for multiple floors.

Architectural drawings, which include floors, walls, windows, doors, and stairs, can also be extracted from Revit program easily by just selecting the required level and editing the visibility and graphics from properties to filter drawing's categories, also from properties, the view range might need to be edited to view some required details. Figure (4.6), (4.7) and (4.8) shows the structural drawings for ground, first, second, and third floor respectively.

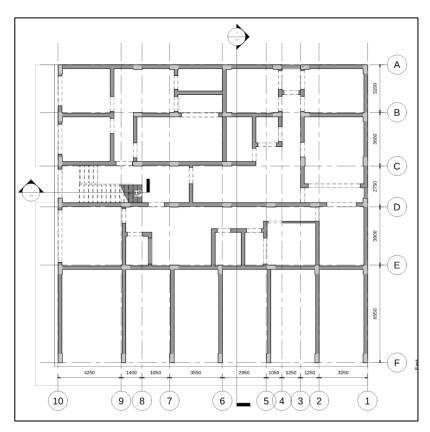


Figure 4.6: Level 0 (Ground Floor Plan)

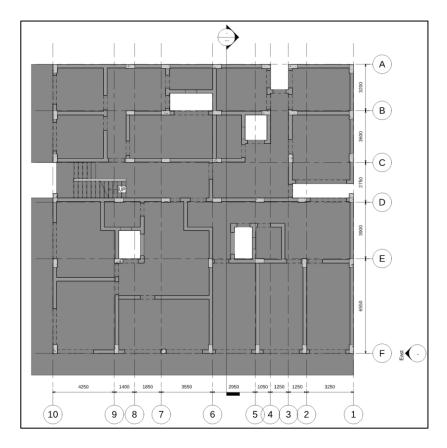


Figure 4.7: Level 1 (First Floor Plan)

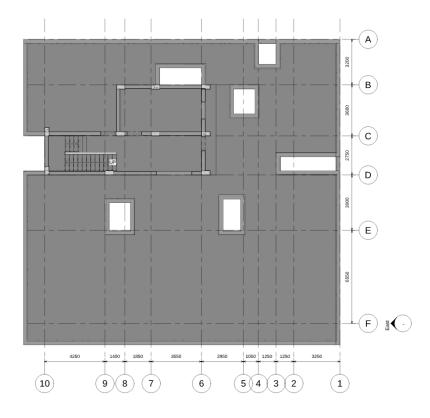


Figure 4.8: Level 3 (Third Floor Plan)

4.2 Preparing Bills of Quantities From Revit Program

Autodesk Revit as one of the programs that depends on BIM technology, when the building's parts were created, it didn't create it as merely shapes, everything created was actually set of information that helps the program to coordinate all the project, also those information can be invested to obtain BOQ with high level of details. in this section, exhibition of some schedules that have been made with Revit with a limited level of details as needed:

Blinding and Raft Foundation concrete quantities

From view / schedules / schedule/quantities/Structural Foundations was selected and the fields added as volume, cost, perimeter, area, thickness, and comments. The only hand entered data was the unit price of 95000 and 110000 IQD of the volume for raft foundation and blinding respectively. Table (4.1) shows blinding and raft foundation's concrete quantities.

<structural foundation="" schedule=""></structural>							
Α	A B C D E						
Volume	Cost IQD	Perimeter	Perimeter Area Foundation Thickne		Comments		
255.76	28133300	82600	426 m²	600	raft foundation		
64.22	7064600	92600	535 m²	120	blinding		

Table 4.1: Blinding and Raft Foundation's Concrete Quantities

Raft Foundation's rebar quantities

From view / schedules / schedule/quantities/Structural Rebar was selected and the fields added as weight, cost, bar diameter, reinforcement volume, spacing, and comments. The only hand entered data was the unit price of 1300000 IQD per Ton for all bar diameters. Table (4.2) shows raft foundation's rebar schedule.

 Table 4.2: Raft Foundation's Rebar Details & Quantities

Raft Rebar Schedule							
Α	В	С	D	E	F		
weghit	Cost IQD	Bar Diameter	Reinforcement Vol	Spacing	Comments		
2.762325	3591000	16 mm	0.351889 m ³	249 mm	Raft Rebars		
2.762325	3591000	16 mm	0.351889 m ³	249 mm	Raft Rebars		
2.76837	3598900	16 mm	0.352659 m ³	249 mm	Raft Rebars		
2.76837	3598900	16 mm	0.352659 m ³	249 mm	Raft Rebars		
11.06139	14379800	^	1.409094 m ³		·		

Column concrete quantities

From view / schedules / schedule/quantities/ Structural Columns was selected and the fields added as volume, cost, type, count, base level, and top level. Cost formula was entered as volume multiplied by 95000. Table (4.3), (4.4), (4.5) and (4.6) show column schedule and concrete quantity schedules for ground, first, second, and third floor respectively.

<structural column="" floor="" ground="" schedule=""></structural>								
Α	В	B C D E F						
Volume	Cost IQD	Туре	Count Base Level		Top Level			
26.57 m ³	2524000	300 x 600 mm	41	Level 0	Level 1			

Table 4.3: Ground Floor's Column Schedule & Concrete Quantity

Table 4.4: First Floor's Column Schedule & Concrete Quantity

<structural 1st.="" column="" floor="" schedule=""></structural>									
Α	В	B C D E F							
Volume	Cost IQD	Туре	Count	Base Level	Top Level				
0.23	22200	300 x 300mm	1	Level 1	Level 2				
17.78	1689500	300 x 600 mm	38	Level 1	Level 2				
18.02	1711700	•	·	^					

Table 4.5: Second Floor's Column Schedule & Concrete Quantity

<structural 2nd.="" column="" floor="" schedule=""></structural>								
Α	A B C D E F							
Volume	Cost IQD	Туре	Count	Base Level	Top Level			
0.23	22200	300 x 300mm	1	Level 2	Level 3			
17.78	1689500	300 x 600 mm	38	Level 2	Level 3			
18.02	1711700	·			·			

<structural 3rd.="" column="" floor="" schedule=""></structural>									
Α	В	B C D E F							
Volume	Cost IQD	Туре	Count	Base Level	Top Level				
4.39 m ³	417200	300 x 600 mm	10	Level 3	Level 4				
4.39 m ³	417200								

Column Rebar quantities.

From view / schedules / schedule / quantities/Structural Rebar was selected and the fields added as weight, cost, bar diameter, reinforcement volume, spacing, and comments. Then the results were filtered by comments equal G.F col. Cost formula was entered as weight multiplied by 920000. Table (4.7), (4.8), (4.9) and (4.10) show column rebar quantity schedule for ground, first, second, and third floor respectively.

<g.f column="" rebar="" schedule=""></g.f>								
Α	В	С	D	E	F			
weghit	cost	Bar Diameter	Reinforcement Vol	Spacing	Comments			
1.926187	1772100	10 mm	0.245374 m ³	120 mm	G.F col.			
0.16469	151500	10 mm	0.020980 m ³	248 mm	G.F col.			
4.529825	4167400	16 mm	0.577048 m ³		G.F col.			
6.620701	6091000		0.843401 m ³		·			

 Table 4.7: Ground Floor's Column Rebar Schedule

Table 4.8: First Floor's Column Rebar Schedule

<1st.Floor column Rebar Schedule>							
Α	В	С	D	E	F		
weghit	cost	Bar Diameter	Reinforcement Vol	Spacing	Comments		
1.263008	1162000	10 mm	0.160893 m ³	120 mm	1st.&2nd.F col.		
0.076377	70300	10 mm	0.009730 m ³	745 mm	1st.&2nd.F col.		
3.409206	3136500	16 mm	0.434294 m ³		1st.&2nd.F col.		
4.748591	4368700		0.604916 m ³				

 Table 4.9: Second Floor's Column Rebar Schedule

<second column="" floor="" rebar="" schedule=""></second>								
Α	A B C D E F							
weghit	cost	Bar Diameter	Reinforcement Vol	Spacing	Comments			
1.263008	1162000	10 mm	0.160893 m ³	120 mm	2nd.col.			
0.020099	18500	10 mm	0.002560 m ³	745 mm	2nd.col.			
2.881095	2650600	16 mm	0.367018 m ³		2nd.col.			
4.164202	3831100		0.530472 m ³					

<3rd. Floor column Rebar Schedule>							
Α	B C D E F						
weghit	cost	Bar Diameter	Reinforcement Vol	Spacing	Comments		
0.250561	230500	10 mm	0.031919 m ³	150 mm 150 mm	3rd.col.		
0.640804	589500	16 mm	0.081631 m ³		3rd.col.		
0.891365	820100		0.113550 m ³				

Table 4.10: Third Floor's Column Rebar Schedule

Slab's concrete and formwork quantities

From view / schedules / schedule / quantities/ Floors were selected and the fields added as volume, area, perimeter, elevation at top, default thickness, formwork area, cost (of concrete) and formwork cost. Formwork area was entered as a formula equals ((Area + perimeter) *default thickness), Cost of concrete was a formula of (volume*95000), and formwork cost was a formula of (formwork area*10000) Then the results were filtered by elevation at top. Table (4.11), (4.12), (4.13) and (4.14) show slab's concrete and formwork quantity schedule for ground, first, second, and third floor respectively.

Table 4.11: Ground Floor's Slab Concrete and Formwork Schedule

<g.floor &="" concrete="" formwork="" schedule=""></g.floor>							
A	A B C D E F G H						
Volume	Area	Perimeter	Elevation at Top	Default Thickness	Formwork Area	Cost IQD	formwork Cost IQD
89.59 m³	448 m²	131688	4200	200	474.3	8511100	4742900

 Table 4.12: First Floor's Slab Concrete and Formwork Schedule

<1st. Floor Concrete & Formwork Schedule>							
A	В	C	D	E	F	G	H
Volume	Area	Perimeter	Elevation at Top	Default Thickness	Formwork Area	Cost IQD	formwork Cost IQD
89.59 m ³	448 m²	131688	7400	200	474.3	8511100	4742900

Table 4.13: Second Floor's Slab Concrete and Formwork Schedule

<2nd. Floor Concrete & Formwork Schedule>							
A	В	С	D	E	F	G	Н
Volume	Area	Perimeter	Elevation at Top	Default Thickness	Formwork Area	Cost IQD	formwork Cost IQD
89.59 m³	448 m²	131688	10600	200	474.3	8511100	4742900

<3rd. Floor Concrete & Formwork Schedule>							
Α	В	С	D	E	F	G	Н
Volume	Area	Perimeter	Elevation at Top	Default Thickness	Formwork Area	Cost IQD	formwork Cost IQD
11.97 m ³	60 m²	36800	13600	200	67.2	1137200	672100

Table 4.14: Third Floor's Slab Concrete and Formwork Schedule

Beam's concrete quantities

From view / schedules / schedule / quantities/ Structural Framing was selected and the fields added as volume, cost IQD, count, length, elevation at top, family and type, and formwork area. Formwork area was entered as a formula equals (beam formwork cross section * length), Then the results were filtered by elevation at top. Table (4.15), (4.16), (4.17) and (4.18) show concrete for beams and formwork schedule for ground, first, second, and third floor respectively.

 Table 4.15: Ground Floor's Beams Concrete & Formwork Schedule

		<g.f. f<="" th=""><th>loor Structu</th><th>ral Framing C</th><th>oncrete Schedule></th><th></th></g.f.>	loor Structu	ral Framing C	oncrete Schedule>	
Α	В	С	D	E	F	G
Volume	Cost IQD	Count	Length	Elevation at Top	Family and Type	formwork area
	0777000	10		1000		070.0
29.24 m ³	2777600	18	249000	4200	M_Concrete-Rectangular Beam: 300 x 600m	273.9
29.24 m ³	2777600		249000			273.9

 Table 4.16: First Floor's Beams Concrete & Formwork Schedule

		<1st. F	loor Structur	al Framing Co	oncrete Schedule>	
A	В	С	D	E	F	G
Volume	Cost IQD	Count	Length	Elevation at Top	Family and Type	formwork area
27.41 m ³	2603800	17	232200	7400	M_Concrete-Rectangular Beam: 300 x 600m	255.42
27.41 m³	2603800	<u>`</u>	232200		·	255.42

Table 4.17: Second Floor's Beam	s Concrete & Formwork Schedule
---------------------------------	--------------------------------

		<2nd. F	loor Structu	ral Framing Co	oncrete Schedule>	
Α	В	С	D	E	F	G
Volume	Cost IQD	Count	Length	Elevation at Top	Family and Type	formwork area
22.09 m ³	2098500	15	188100	10600	M_Concrete-Rectangular Beam: 300 x 600m	206.91
22.09 m ³	2098500		188100			206.91

		<3rd. F	loor Structur	al Framing Co	oncrete Schedule>	
Α	В	С	D	E	F	G
Volume	Cost IQD	Count	Length	Elevation at Top	Family and Type	formwork area
1.48 m³	140200	3	13050	13600	M_Concrete-Rectangular Beam: 300 x 600m	14.355
1.48 m ³	140200		13050			14.355

Table 4.18: Third Floor's Beams Concrete & Formwork Schedule

Parapets concrete quantities

From view / schedules / schedule / quantities/ Structural Framing was selected and the fields added as volume, cost IQD, count, length, elevation at top, family and type, and formwork area. Formwork area was entered as a formula equals (Parapet cross section * length), Then the results were filtered by elevation at top. Table (4.19), (4.20), (4.21) and (4.22) show parapets and formwork quantity schedule for ground, first, second, and third floor respectively.

Table 4.19: Ground Floor's Parapets Concrete & Formwork Schedule

	<g.f< th=""><th>F. Floor S</th><th>Structural Fra</th><th>aming (parape</th><th>ts) Concrete Schedule></th><th></th></g.f<>	F. Floor S	Structural Fra	aming (parape	ts) Concrete Schedule>	
Α	В	С	D	E	F	G
Volume	Cost IQD	Count	Length	Elevation at Top	Family and Type	formwork area
		_				
1.85 m ³	176100	7	46450	4400	M_Concrete-Rectangular Beam: 200x200mm	18.58
1.85 m ³	176100		46450			18.58

Table 4.20: First Floor's Parapets Concrete & Formwork Schedule	Э
---	---

	<1s	t. Floor S	structural Fra	aming (parape	ts) Concrete Schedule>	
Α	В	С	D	E	F	G
Volume	Cost IQD	Count	Length	Elevation at Top	Family and Type	formwork area
1.85 m ³	176100	7	46450	7600	M_Concrete-Rectangular Beam: 200x200mm	27.87
1.85 m³	176100		46450			27.87

Table 4.21: Second Floor's Parapets Concrete & Formwork Schedule

<2nd. Floor Structural Framing (parapets) Concrete Schedule>								
Α	В	С	D	E	F	G		
Volume	Cost IQD	Count	Length	Elevation at Top	Family and Type	formwork area		
5.21 m ³	495000	30	85738	10800	M_Concrete-Rectangular Beam: 200x300mm	60.01651		
7.89 m ³	749800	2	43500	10800	M_Concrete-Rectangular Beam: 300 x 800m	82.65		
13.10 m³	1244800		129238		·	142.66651		

<3rd. Floor Structural Framing (parapets) Concrete Schedule>								
Α	В	С	D	E	F	G		
Volume	Cost IQD	Count	Length	Elevation at Top	Family and Type	formwork area		
0.35 m ³	32800	1	6350	13800	M_Concrete-Rectangular Beam: 200x300mm	1.905		
5.36 m ³	509600	5	29740	13800	M_Concrete-Rectangular Beam: 300 x 800m	44.61		
5.71 m³	542400	·	36090	·		46.515		

Table 4.22: Third Floor's Parapets Concrete & Formwork Schedule

Stairs concrete quantities

From view / schedules / schedule / quantities/ Stairs was selected and the fields added as top level, volume, cost, actual number of rises, actual riser height, actual tread depth, formwork area, and formwork cost. Formwork cost was entered as a formula equal (formwork area * 10000). Then the results were sorted by top level. Table (4.23) shows stairs material takeoff schedule.

Table 4.23: Stairs Material Takeoff

<stairs material="" takeoff=""></stairs>								
Α	В	С	D	E	F	G	Н	
Top Level	Material: Volume	Cost	Actual Number of	Actual Riser Height	Actual Tread Depth	formwork area	formwork cost	
Level 1	3.07 m ³	291800	20	210	300	15.01	150100	
Level 2	2.71 m³	257300	17	188	300	13.81	138100	
Level 3	2.71 m³	257300	17	188	300	13.81	138100	

Rebar quantities for slab, beams, and stairs

From view / schedules / schedule / quantities/Structural Rebar was selected and the fields added as weight, cost, bar diameter, reinforcement volume, spacing, and comments. Then the results were filtered by comments. Cost formula was entered as weight multiplied by 1300000. Table (4.24), (4.25), (4.26) and (4.27) show slab, beam, and stair's rebar quantity schedule for ground, first, second, and third floor respectively.

Table 4.24: Ground Floor's Slab, Beams & Stair Rebar Schedule

<g.f &stair="" beams="" rebar="" schedule="" slab,=""></g.f>								
Α	В	С	D	E	F			
weghit	Cost IQD	Bar Diameter	Reinforcement Vol	Spacing	Comments			
0.931564	1211000	10 mm	0.118671 m ³	250 mm	GF.slab&beams			
8.54332	11106300	12 mm	1.088321 m ³		GF.slab&beams			
2.487205	3233400	16 mm	0.316841 m ³		GF.slab&beams			
11.962088	15550700	·	1.523833 m ³					

<first &stair="" beams="" floor="" rebar="" schedule="" slab,=""></first>							
Α	В	С	D	E	F		
weghit	Cost IQD	Bar Diameter	Reinforcement Vol	Spacing	Comments		
0.899202	1169000	10 mm	0.114548 m ³	223 mm 268 mm	1st. slab		
8.41709	10942200	12 mm	1.072241 m ³		1st. slab		
2.149315	2794100	16 mm	0.273798 m ³		1st. slab		
11.465607	14905300	·	1.460587 m ³	··			

Table 4.25: First Floor's Slab, Beams & Stair Rebar Schedule

Table 4.26: Second Floor's Slab, Beams & Stair Rebar Schedule

<second &stair="" beams="" floor="" rebar="" schedule="" slab,=""></second>								
Α	В	С	D	E	F			
weghit	Cost IQD	Bar Diameter	Reinforcement Vol	Spacing	Comments			
0.930559	1209700	10 mm	0.118543 m ³	223 mm 268 mm	2nd&beam. slab			
8.41709	10942200	12 mm	1.072241 m ³		2nd&beam. slab			
2.147026	2791100	16 mm	0.273507 m ³		2nd&beam. slab			
11.494675	14943100	^	1.464290 m ³	·`				

Table 4.27: Third Floor's Slab & Beams Rebar Schedule

	<3rd. Floor slab, Beams Rebar Schedule>								
Α	B	С	D	E	F				
weghit	Cost IQD	Bar Diameter	Reinforcement Vol	Spacing	Comments				
0.190917	248200	10 mm	0.024321 m ³	147 mm 250 mm	3rd.slab				
1.197359	1556600	12 mm	0.152530 m ³		3rd.slab				
0.535798	696500	16 mm	0.068254 m ³		3rd.slab				
1.924074	2501300		0.245105 m ³						

DPC material takeoff

From view / schedules / schedule / quantities/ Structural framing was selected and the fields added as type, length, type comments, volume, and cut length. Then the results were filtered by type comments equal to DPC. Table (4.28) shows DPC quantity schedule.

Table 4.28 :	DPC Schedule
---------------------	--------------

<dpc schedule=""></dpc>								
Α	B C D E							
Туре	Length	Type Comments	Volume	Cut Length				
250x150mm	50x150mm 215.845 DPC 7.31 212.024							

Brick walls material takeoff.

From view / schedules / schedule / quantities / Walls were selected and the fields added as volume, cost, area, base constrain, top constrain, and family and type. The cost field was a formula equal (volume*165000). Then the results were filtered by base constrain, and sorted by top constrain and family and type. Table (4.29), (4.30), (4.31) and (4.32) show brick wall quantity schedule for ground, first, second, and third floor respectively.

<ground floor's="" schedule="" wall=""></ground>							
Α	В	С	D	E	F		
Volume	cost	Area	Base Constraint	Top Constraint	Family and Type		
0.98	160900	4 m²	Level 0	Unconnected	Basic Wall: Generic - 250		
1.25	206700	10 m²	Level 0	Up to level: Level 1	Basic Wall: Generic - 120		
160.22	26435600	645 m²	Level 0	Up to level: Level 1	Basic Wall: Generic - 250		
162.44	26803200	659 m²		·	·		

Table 4.29: Ground Floor's Brick Wall Schedule

Table 4.30: First Floor's Brick Wall Schedule

<first floor's="" schedule="" wall=""></first>							
Α	В	С	D	E	F		
Volume	cost	Area	Base Constraint	Top Constraint	Family and Type		
120.44	19872000	482 m²	Level 1	Up to level: Level 2	Basic Wall: brick 250 mm		
120.44	19872000	482 m²					

Table 4.31: Second Floor's Brick Wall Schedule

<second floor's="" schedule="" wall=""></second>								
Α	A B C D E F							
Volume	cost	Area	Base Constraint	Top Constraint	Family and Type			
120.44	19872000	482 m²	Level 2	Up to level: Level 3	Basic Wall: brick 250 mm			
120.44	19872000	482 m²						

<third floor's="" schedule="" wall=""></third>						
Α	В	С	D	E	F	
Volume	cost	Area	Base Constraint	Top Constraint	Family and Type	
44.07	7270800	176 m²	Level 3	Up to level: Level 4	Basic Wall: brick 250 mm	
44.07	7270800	176 m²				

Table 4.32: Third Floor's Brick Wall Schedule

Roof Isolation material takeoff

From view / schedules / schedule / quantities / Rooms were selected and the fields added as area, name, upper limit, and isolation cost. The isolation cost field was a formula equal (area*27000). Then the results were filtered by name equals Roof tiles, and sorted also by name. Table (4.33) shows roof isolation quantity schedule.

 Table 4.33: Roof Isolation Schedule

<roof isolation="" schedule=""></roof>					
Α	В	С	D		
Area	Name	Upper Limit	Isolation cost		
49	Roof tiles	Level 4	1330515		
367	9899796				
416	•		11230311		

Plaster and facade marble material takeoff

From view / schedules / material takeoff / multi-category was selected and the fields added as Material: area, material: name, material: cost, total cost. The total cost field was a formula equal (Material: cost * Material: Area). Material: cost was already entered in the properties of each material when created. The results were filtered by comments equal plaster & facade, and sorted ascendingly by material: name. Table (4.34) shows Plaster and facade marble material takeoff schedule.

 Table 4.34: Plaster and Facade Marble Schedule

<plaster &="" facade="" marble="" material="" takeoff=""></plaster>					
Α	B C D				
Material: Area	Material: Name Material: Cost Total cost				
306	Marble facade	75000	22957089		
1135	Plaster P	11000	12480384		

Facade sweep material takeoff

From view / schedules / material takeoff / multi-category was selected and the fields added as length, material: name, material: cost, total cost. The total cost field was a formula equal (Material: cost * length). Material: cost was already entered in the properties of each material when created. The results were filtered by material: name equal facade sweep, and sorted ascendingly by material: name. Table (4.35) shows facade sweep material takeoff schedule.

<facade material="" sweep="" takeoff=""></facade>					
Α	В	С	D		
length	Material: Name	Material: Cost	Total Cost		
356.8	facade sweep	35000	12489337		

 Table 4.35: Facade Sweep Schedule

The other part of facade sweep is related to the windows that have facade view, so from windows schedule, the fields added as comments, perimeter, and cost. The cost field was a formula equal (perimeter * 35000). The results were filtered by comments equal facade window. Table (4.36) shows window facade sweep material takeoff schedule.

Table 4.36: Facade Window Sweep Schedule

<facade schedule="" sweep="" window=""></facade>					
A B C					
Comments perimeter cost					
facade window 234 8183000					

Gypsum plastering material takeoff

From view / schedules / schedule / quantities / Walls was selected and the fields added as material: area, cost, material: name, and base constrain. The total cost field was a formula equal (Material: area * 16000). The results were filtered by material: name equal gypsum, and sorted ascendingly by base constrain. Table (4.37) shows wall gypsum plastering material takeoff schedule.

< Wall Gypsum Plastering Material Takeoff>					
Α	В	С	D	E	
Material: Area	Cost	Material: Name	Base Constraint	Material: Volume	
1029	16460219	Gypsum	Level 0	19.55 m³	
658	10527575	Gypsum	Level 1	11.79 m³	
658	10527587	Gypsum	Level 2	11.79 m³	
104	1656638	Gypsum	Level 3	1.93 m³	

Table 4.37: Wall Gypsum Plastering Schedule

The other part of gypsum is on related to the roof, so from view / schedules / schedule / quantities / Rooms were selected and the fields added as area, name, upper limit, and roof gypsum cost. The roof gypsum cost field was a formula equal (area*16000). Then the results were filtered by name does not equal court, balcony and roof tiles and sorted also by name. Table (4.38) shows roof gypsum plastering material takeoff schedule.

<roof gypsum="" plastering=""></roof>						
Α	В	С	D			
Area	Area Name Upper Limit roof gypsum o					
342		Level 0	5479775			
324		Level 1	5191763			
324	24 Level 2 5191844					
43	Bedroom	Level 3	691968			

 Table 4.38: Roof Gypsum Plastering Schedule

Floor marble material takeoff

From view / schedules / schedule / quantities / Rooms were selected and the fields added as area, name, upper limit, and floor marble cost. The floor marble cost field was a formula equal (area*45000). Then the results were filtered by name does not equal bathroom, does not equal court, and upper limit equals level 0, and also sorted by name. Table (4.39) shows ground floor's marble material takeoff schedule.

<floor marble="" schedule=""></floor>					
Α	В	С	D		
Area	Name	Upper Limit	Floor marble cost		
114	Bedroom	Level 0	5152330		
36	corridor	Level 0	1603018		
60	kitchen	Level 0	2692502		
119	shop	Level 0	5360215		
329 14808065					

Table 4.39: Floor Marble Schedule

Floor porcelain material takeoff

From view / schedules / schedule / quantities / Rooms were selected and the fields added as area, name, upper limit, and floor porcelain cost. The floor porcelain cost field was a formula equal (area*32000). Then the results were filtered by name does not equal bathroom, does not equal court, does not equal roof tiles, and upper limit does not equal level 0, and also sorted by name. Table (4.40) shows floor porcelain material takeoff schedule.

<floor porcelain="" schedule=""></floor>					
Α	В	С	D		
Area	Name	Upper Limit	Floor Porcelain cos		
95	Balkony		3052747		
494	Bedroom		15794541		
165	kitchen		5273333		
754	· · · ·	·	24120621		

Table 4.40:	Floor	Porcelain	Schedule
--------------------	-------	-----------	----------

Wall ceramic material takeoff

From view / schedules / schedule / quantities / Walls was selected and the fields added as material: comment, material: area, base constrain, material cost, and total cost. The total cost field was a formula equal (Material: cost * Material: area). Material: cost was already entered in the properties of each material when created. The results were filtered by material: comment equal ceramic, and sorted ascendingly by base constrain. Table (4.41) shows wall ceramic material takeoff schedule.

	<ceramic material="" takeoff=""></ceramic>					
Α	A B C D E					
Material: Comment	Material: Area	Base Constraint	Material: Cost	Total Cost		
Ceramic	259	Level 0	40000	10356122		
Ceramic	265	Level 1	40000	10608406		
Ceramic	265	Level 2	40000	10608406		

Table 4.41: Wall Ceramic Schedule

Paint material takeoff

From view / schedules / schedule / quantities / Walls was selected and the fields added as material: area, cost, material: name, and base constrain. The cost field was a formula equal (Material: area * 6000). The results were filtered by material: name equal gypsum, and sorted ascendingly by base constrain. Table (4.42) shows wall paint material takeoff schedule.

<wall material="" paint="" takeoff=""></wall>					
Α	В	С	D		
Material: Area	Cost	Material: Name	Base Constraint		
1029	6172582	Gypsum	Level 0		
658	3947841	Gypsum	Level 1		
658	3947845	Gypsum	Level 2		
104	621239	Gypsum	Level 3		

Table 4.42: Wall Paint Schedule

The other part of gypsum is on related to the roof, so from view / schedules / schedule / quantities / Rooms were selected and the fields added as area, name, upper limit, and roof paint cost. The roof paint cost field was a formula equal (area*6000). Then the results were filtered by name does not equal court, balcony and roof tiles, and sorted also by name. Table (4.43) shows roof paint material takeoff schedule.

Table 4.43: Roof Paint Schedule

<roof material="" paint="" takeoff=""></roof>										
A B C D										
Area	Area Name Upper Limit									
342		Level 0	2054916							
324		Level 1	1946406							
324		Level 2 1946406								
43	Bedroom	Level 3	259488							

Skirting material takeoff

From view / schedules / schedule / quantities / Rooms were selected and the fields added as perimeter, marble skirting cost, name, and upper limit. The marble skirting cost field was a formula equal (perimeter * 7500). Then the results were filtered by name does not equal bathroom, court, and kitchen, and upper limit equals level 0, and also sorted by name. Table (4.44) shows marble skirting material takeoff schedule.

<marble schedule="" skirting=""></marble>										
A B C D										
Perimeter	marble skirting cost	Name	Upper Limit							
129	965322	Bedroom	Level 0							
114	852654	shop	Level 0							
242	1817976									

 Table 4.44: Marble Skirting Schedule

The same procedure above is applied again to get porcelain skirting material takeoff, The marble skirting cost field was a formula equal (perimeter * 6000). Then the results were filtered by name does not equal bathroom, court, kitchen, roof tiles and balcony, and upper limit does not equal level 0, and also sorted by upper limit. Table (4.45) shows porcelain skirting material takeoff schedule.

<porcelain schedule="" skirting=""></porcelain>										
A B C D										
Perimeter	Porcelain skirting c	Name	Upper Limit							
242	1451857	Bedroom	Level 1							
242	1452037	Bedroom	Level 2							
44	264240	264240 Bedroom Level 3								
528	3168133	^								

 Table 4.45: Porcelain Skirting Schedule

Door's schedule

From view / schedules / schedule / quantities / Doors were selected and the fields added as Family and type, width, count, and cost. Then the results were sorted ascendingly by width. Table (4.46) shows door's quantity schedule.

<door schedule=""></door>									
A B C D									
Family and Type	Width	Count	Cost						
M_Door-Opening: 900x 2200 m	900	11	2200000						
M_Door-Opening: 1000x 2200 m	1000	34	8500000						
M_Door-Opening: 1100x 2700m	1100	11	12100000						
M_Door-Opening: 2000x 2700m	2000	1	1300000						

 Table 4.46: Door's Schedule

Railing schedule

From view / schedules / schedule / quantities / Railing was selected and the fields added as Family and type, length, railing height, and cost. The cost field was a formula equal (length * 95000). Then the results were sorted ascendingly by family and type. Table (4.47) shows railing quantity schedule.

 Table 4.47: Railing Schedule

<railing schedule=""></railing>									
A B C D									
Family and Type	Length	Railing Height	Cost						
Railing: 900mm	27	900	2604274						
Railing: 900mm fac	92	900	8758050						
Grand total: 10	120		11362324						

Windows schedule

From view / schedules / schedule / quantities / Doors were selected and the fields added as Family and type, width, height, count, area, and cost. The cost field was a formula equal (Area * 160000). Then the results were sorted ascendingly by family and type. Table (4.48) shows Aluminum windows quantity schedule.

<aluminum schedule="" window=""></aluminum>								
Α	В	С	D	E	F			
Family and Type	Width	Height	Count	Area	Cost			
M_Window-Square Opening: 800 x 600 mm	800	600	11	5	844800			
M_Window-Square Opening: 0900 x 1200mm	900	1200	6	6	1036800			
M_Window-Square Opening: 0900 x 1800mm	900	1800	2	3	518400			
M_Window-Square Opening: 1200x 1800mm	1200	1800	8	17	2764800			
M_Window-Square Opening: 1500x 1600mm	1500	1600	4	10	1536000			
M_Window-Square Opening: 1600x 1800mm	1200	1800	1	2	345600			
M_Window-Square Opening: 2000x 2200 mm	2000	2200	1	4	704000			
M_Window-Square Opening: 2000x 2500 mm	2000	2500	2	10	1600000			
M_Window-Square Opening: 2400x 1800mm	2400	1800	2	9	1382400			
M_Window-Square Opening: 2500x 1800mm	2500	1800	1	5	720000			
M_Window-Square Opening: 2500x 2400 mm	2500	2400	18	108	17280000			
M_Window-Square Opening: 3500x 1800mm	3500	1800	2	13	2016000			
M_Window-Square Opening: W1 2x2	2000	1400	7	20	3136000			
M_Window-Square Opening: W2 2.5x2	2500	1400	1	4	560000			
M_Window-Square Opening: W3 1.25x2	1250	1400	3	5	840000			
M_Window-Square Opening: W4 3.5x2	3500	1400	2	10	1568000			
M_Window-Square Opening: W5 kitchen 1.75	1750	1400	1	2	392000			
M_Window-Square Opening: W6 1.75x2	1750	1400	1	2	392000			
M_Window-Square Opening: Window door10	1000	2100	6	13	2016000			
Grand total: 79		•		248	39652800			

Table 4.48: Aluminum Windows Schedule

From view / schedules / schedule / quantities / windows were selected and the fields added as Family and type, area, and protection cost. The protection cost field was a formula equal (Area * 50000). Then the results were sorted ascendingly by family and type. Table (4.49) shows windows protection quantity schedule.

<windows protection="" schedule=""></windows>									
A B C									
Family and Type	Area	protection cost							
M_Window-Square Opening: W1 2x2	8.4	420000							
M_Window-Square Opening: W2 2.5x2	3.5	175000							
M_Window-Square Opening: W3 1.25x2	5.25	262500							
M_Window-Square Opening: W4 3.5x2	9.8	490000							
M_Window-Square Opening: W5 kitchen 1.75x2	2.45	122500							
M_Window-Square Opening: W6 1.75x2	2.45	122500							
M_Window-Square Opening: Window door1000x2100	6.3	315000							
Grand total: 14	38.15	1907500							

Table 4.49: Windows Protection Schedule

4.3 Comparison Schedules

After the data was listed, it was collected in two brief schedules, to compare the quantities and prices obtained by Revit software, with the data of the tender BOQ, the first table was for comparing the material and cost for the main structure of the building, while the second table was for the finishing quantities and pricing comparison.

No.	Description	Unit	Revit Quantity	Tender Quantity	Difference	Revit price	Tender price	Difference
1	Excavation 0.6m from the surface	m3	417	417	0.000	3753000	3753000	0
2	filling with subbase and compacting	m3	278	278	0.000	4865000	4865000	0
3	Blinding 12cm	m3	64.22	67	-2.780	7064200	7370000	-305800
4	Sanitaries	-	-	-		2000000	2000000	0
5	Raft foundation's rebar,	Ton	11.06	12	-0.939	14379807	15600000	-1220193
6	raft foundation's formwork	-	-	-		1500000	1500000	0
7	raft foundation concrete 60 cm	m3	255.76	275	-19.240	24297200	26125000	-1827800
8	Ground floor's column concrete	m3	26.57	30	-3.430	2524150	2850000	-325850
9	Ground floor's column formwork & Rebar works	Cou nt	41	41	0.000	6150000	6150000	0
10	rebar for G.F columns 10mm and 16mm	Ton	6.62	7	-0.379	6091045	6440000	-348955
11	concrete for slab and beams of G.F	m3	123.75	133	-9.250	11756250	12635000	-878750
12	rebar for G.F slab- beams and stair 10mm, 12mm and 16mm	Ton	11.96	12	-0.038	15550714	15600000	-49286
13	G.F formwork for slab-beam and stairs	m2	781.79	690	91.790	7817900	6900000	917900
14	rebar for 1st. Floor columns 10mm and 16mm	Ton	4.75	5.00	-0.251	4482124	4600000	-117876
15	First floor's column formwork & Rebar works	Cou nt	39	39.00	0.000	5850000	5850000	0
16	First floor's column concrete	m3	18.02	21.00	-2.980	1756550	1995000	-238450
17	1st. floor formwork for slab-beam and stairs	m2	762.11	690	72.110	7621100	6900000	721100

 Table 4.50: Material and Cost Comparison (For Main Structure)

		r	1	1	1			1
No.	Description	Unit	Revit Quantity	Tender Quantity	Difference	Revit price	Tender price	Difference
18	rebar for 1st. slab- beams and stair 10mm, 12mm and 16mm	Ton	11.47	12.00	-0.534	14905289	15600000	-694711
19	concrete for slab and beams of 1st. Floor	m3	121.56	133	-11.440	11548200	12635000	-1086800
20	rebar for 2nd. Floor columns 10mm and 16mm	Ton	4.16	5.00	-0.836	3944486	4600000	-655514
21	second floor's column formwork & Rebar works	Cou nt	39	39.00	0.000	5850000	5850000	0
22	Second floor's column concrete	m3	18.02	21.00	-2.980	1756550	1995000	-238450
23	2nd. floor formwork for slab- beam and stairs	m2	798.92	710	88.915	7989151	7100000	889151
24	rebar for 2nd. floor slab-beams and stair 10mm, 12mm and 16mm	Ton	11.49	12.50	-1.005	14943078	16250000	-1306923
25	concrete for slab and beams of 2nd. Floor	m3	127.49	136	-8.510	12111550	12920000	-808450
26	rebar for 3rd. Floor columns 10mm and 16mm	Ton	0.89	1.20	-0.309	820056	1104000	-283944
27	Third floor's column formwork & Rebar works	Cou nt	10	10.00	0.000	1500000	1500000	0
28	Third floor's column concrete	m3	4.39	5.00	-0.610	417050	475000	-57950
29	3rd. floor formwork for slab & beam	m2	128.07	95.00	33.070	1280700	950000	330700
30	rebar for 3rd. floor slab & beams, 10mm, 12mm and 16mm	Ton	1.92	2.00	-0.076	2501296	2600000	-98704
31	concrete for slab and beams of 3rd. Floor	m3	19.16	17.00	2.160	1820200	1615000	205200
32	DPC	М	215.85	170	45.845	1942605	1530000	412605
33	Ground floor's Brick wall works	M3	162.44	155	7.440	26802600	25575000	1227600
34	First floor's Brick wall works	M3	120.44	108	12.440	19872600	17820000	2052600
35	Second floor's Brick wall works	M3	120.44	108	12.440	19872600	17820000	2052600
36	Third floor's Brick wall works	M3	44.07	48.00	-3.930	7271550	7920000	-648450
	SUM							-2699539
L		I	1	1	1	1	1	

Table 4.50: (Cont.) Material and Cost Comparison (For Main Structure)

o.	Description	Unit	Revit quantity	Tender quantity	Difference	Revit price	Tender price	Difference
o Z 1	Roof tiles & isolation	M2	416	420	-4	11230311	11340000	-109689
2	G.F. gypsum plastering	M2	1371	1355	16	21939994	21680000	259994
3	1st.F. gypsum plastering	M2	982	1240	-258	15719338	19840000	-4120662
4	2nd.F. gypsum plastering	M2	982	1240	-258	15719431	19840000	-4120569
5	3rd.F. Gypsum plastering	M2	147	160	-13	2348606	2560000	-211394
6	plastering	M2	1135	1290	-155	12480384	14190000	-1709616
7	Facade marble tiles	M2	306	325	-19	22957089	24375000	-1417911
8	Facade marble sweeps	М	590.8	650	-59.2	20672337	22750000	-2077663
9	G.F. ceramic	M2	259	260	-1	10356122	10400000	-43878
10	1st.F. ceramic	M2	265	315	-50	10608406	12600000	-1991594
11	2nd.F. ceramic	M2	265	315	-50	10608406	12600000	-1991594
12	G.F paint	M2	1371	1355	16	8227498	8130000	97498
13	1st.F paint	M2	982	1240	-258	5894247	7440000	-1545753
14	2nd.F paint	M2	982	1240	-258	5894251	7440000	-1545749
15	3rd.F paint	M2	147	160	-13	880727	960000	-79273
16	G.F marble	M2	329	325	4	14808065	14625000	183065
17	porcelain other floors	M2	754	820	-66	24120621	26240000	-2119379
18	Bathrooms & court's tiles	no.	17	17	0	3400000	3400000	0
19	stair steps	no.	54	51	3	4050000	3825000	225000
20	G.F skirting	М	242	260	-18	1817976	1950000	-132024
21	Other floor's skirting	М	528	600	-72	3168894	3600000	-431106
22	Steel Main door	no.	1	1	0	1300000	1300000	0
23	main doors for flats	no.	11	11	0	12100000	12100000	0
24	1m width	no.	34	34	0	8500000	8500000	0
25	90cm width	no.	11	11	0	2200000	2200000	0
26	Aluminum windows	M2	248	260	-12	39652800	41600000	-1947200
27	windows protection	M2	38.15	42	-3.85	1907500	2100000	-192500
28	Aluminum Railing	М	120	117	3	11362324	11115000	247324

Table 4.51: Material and Cost Comparison (For Finishing)

No.	Description	Unit	Revit quantity	Tender quantity	Difference	Revit price	Tender price	Difference
29	Electricity works	no.	670	670	0	33500000	33500000	0
30	Sanitary works					16000000	16000000	0
31	Closet	no.	11	11	0	1980000	1980000	0
32	washbasin	no.	11	11	0	2420000	2420000	0
33	shower cabin	no.	11	11	0	3850000	3850000	0
34	Security man& house keeping					6500000	6500000	0
35	Finishing total price					368175327	392950000	-24774673

Table 4.51: (Cont.) Material and Cost Comparison (For Finishing)

Table 4.52: Total Price Differences

	Structure	Finishing	Total
Revit Price	284292461	368175327	652467788
Tender Price	286992000	392950000	679942000
Difference	-2699539	-24774673	-27474212

4.3 Discussion of the Results

By looking to figure (4.9), the differences between Revit and tender quantities for concrete material takeoff are clarified, starting by blinding, foundation, ground floor columns, ground floor slab & beams, first floor columns, first floor slab & beams, second floor columns, second floor slab & beams, and second floor columns, the quantities in Revit are evidentially less than the quantities of tender. But third floor slab & beams quantity in Revit is higher than the quantity of tender.

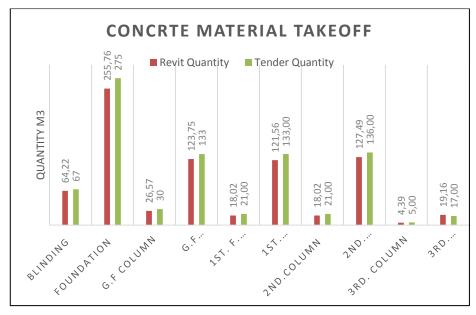


Figure 4.9: Concrete Material Takeoff

Figure (4.10), shows the differences between Revit and tender quantities for steel rebar material takeoff. Revit – based rebar quantities for foundation, ground floor column, first floor column, first floor slab, second floor column, second floor slab, third floor column, and third floor slab, are less than tender – based quantities, only ground floor slab quantity remains nearly the same with Revit and tender – based quantities. Generally, rebar quantities are estimated in higher than the Revit estimation values.

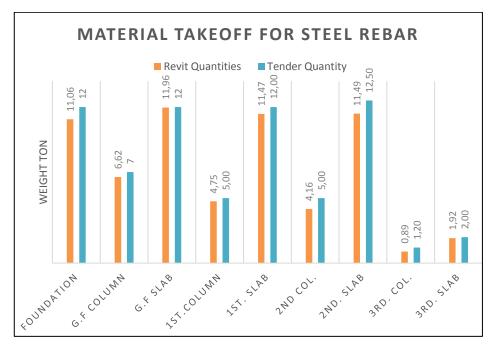


Figure 4.10: Rebar Material Takeoff

Formwork area, which is shown in figure (4.11), are also showing differences, but this time Revit – based values are greater than tender – based values and the difference is very sharp in all floors, this big gap might be occurs because of the lack of drawings and details, as each floor in addition to the floor formwork area has different longitudinal and lateral beams distribution and parapets, so the formwork area also differs in each floor.

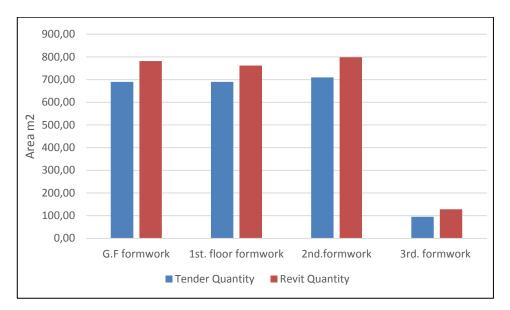


Figure 4.11: Formwork Area

Figure (4.12) shows brick wall material takeoff for the 4 levels of the building, it shows big differences between Revit and tender – based quantities, ground floor's quantities were 162.44 m³ and 155 m³ for Revit and tender – based quantities respectively, first and second floor's quantities are the same which are 120.44 m³ and 108 m³ for Revit and tender based quantities respectively, while in third floor's quantities Revit quantity is 44.07 m³ which is less than tender quantity that equals 48 m³.

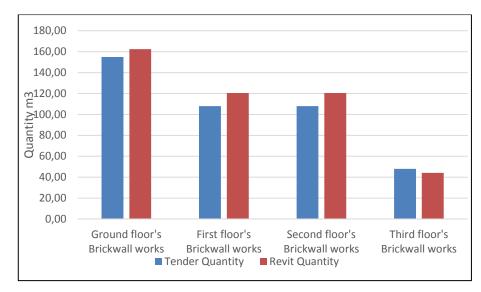


Figure 4.12: Brick Wall Material Takeoff

Figure (4.13) shows plastering material takeoff for the whole building and gypsum plastering material takeoff for each single floor in the building, ground floor's gypsum plastering quantities are 1371 m^2 and 1355 m^2 in Revit and tender – based estimation respectively, which can be considered the same quantity, while in first and second floor, the difference is extremely high, in Revit estimation, the value was 982 m² and for tender estimation the value was 1240 m², which is 21% more than Revit – based estimation. In third floor, the quantity was 147 m² and 160 m² in Revit and tender – based estimation respectively. Plastering estimation values were also different, with 1135 m² and 1290 m² in Revit and tender based estimation respectively.

It is noticeable that tender – based estimation quantities of brick wall in figure (4.) are less than Revit – based estimation quantities in ground, first and second floor, the normal altitude for tender – based gypsum plastering for the mentioned floors should also be less than Revit – based estimation, but by comparing figure (4.) and figure (4.) the contrast is very clear and that reflects the weakness of the traditional methods of estimation.

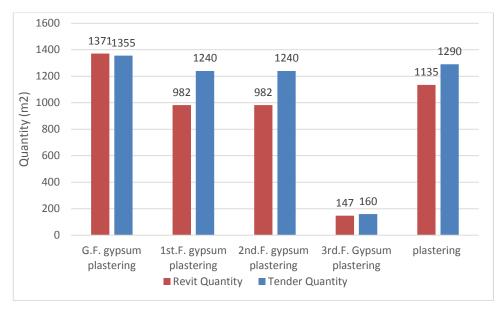


Figure 4.13: Plastering and Gypsum Plastering Material Takeoff

Figure (4.14) shows Facade marble tiles, ground floor's marble, floor porcelain, aluminum windows, and windows protection, Revit – based facade marble tiles estimated quantity is less than tender – based estimated quantity with 306 m² and 325 m². Ground floor's marble Revit -based estimated quantity was 329 and tender – based estimated quantity was 325 m² which can be considered the same. Floor porcelain Revit – based estimated quantity has a big difference from tender – based estimated quantity, it has a value of 754 m² comparing to 820 m² in Tender. Aluminum windows estimation values were also different, with 248 m² and 260 m² in Revit and tender based estimation respectively. Windows protection quantities in Revit – based estimation and tender – based estimation values are 38.15 m² and 42 m² respectively.

Figure 4.14: Marble, Porcelain and Aluminum Windows Material Takeoff

Figure (4.15) shows Facade marble sweeps, skirting, and aluminum railing. For facade marble sweeps, Revit – based estimated quantity is less than tender – based estimated quantity with 590.8 m and 650 m respectively. Ground floor's skirting and other floor's skirting Revit -based estimated quantity was 242, 528 m respectively, and tender – based estimated quantity was 260, 600 m respectively. Aluminum railing has nearly the same values for Revit and tender – based estimations which are 120 and 117 m respectively.

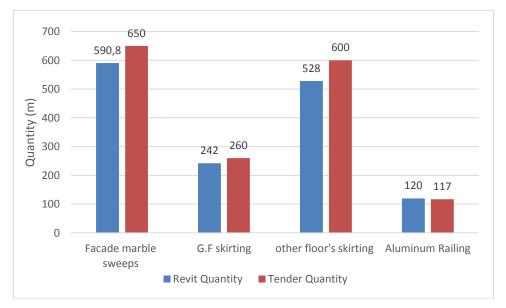


Figure 4.15: Facade Marble Sweep, Skirting and Aluminum Railing Material Takeoff

Finally, figure (4.16) shows ceramic material takeoff variances, ground floor's Revit – based estimated quantity nearly the same with tender – based estimated quantity. First and second floor's skirting and other floor's skirting Revit -based estimated quantity was 242, 528 m respectively, and tender – based estimated quantity was 260, 600 m respectively. Aluminum railing has nearly the same values for Revit and tender – based estimations which are 120 and 117 m respectively.

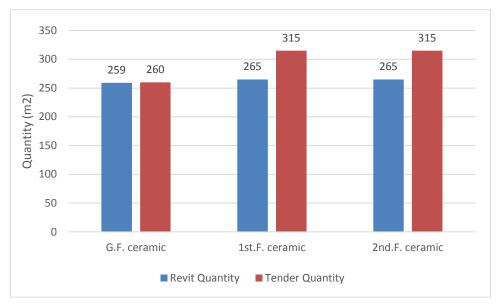


Figure 4.16: Ceramic Material Takeoff

Figure 4.17: Price of Categories Revit vs. Tender (For Finishing)

Figure 4.18: Price of Categories Revit vs. Tender (For Main Structure)

Difference in quantity naturally leads to difference in price, and the amount of variance in price depends on the estimated quantity and the unit price of each category, figure (4.17) and (4.18) show Revit and tender – based price of categories. It is obvious that some categories have a little increase or decrease in price due to either the little change in the quantity or the unit price of the category is not high. In other categories the difference in price is very sharp because of the big difference in Revit and tender – based quantities, also the unit price of the category itself is relatively high. When the estimated quantity is less than the actual quantity, the contractor will spend more than the predestined budget and that leads to reducing the expected profit, when the difference is too much, the contractor could lose and that might cause the project to stop.

However, the oscillation in categories prices causes the total price of the project to be different also, figure (4.19) indicates the total price of the structure, total price of finishing and total price of the building for both Revit and tender – based estimations.

The total price of structure was 284.29 million IQD for Revit – based estimation and 287 million IQD for tender – based estimation, the difference was not big, the reason behind that is because Revit – based formwork, DPC, 3^{rd} floor slab & beams concrete and brick wall estimated quantities are more than tender – based estimated quantities, while in other categories Revit – based quantities are less, this have made a kind of equilibrium and the total price of the structure appears close.

For finishing price, Revit – based estimated cost was 368.17 million IQD, and tender – based estimated cost was 392.95 million IQD, Revit calculation have reduced the estimated cost by more than 6% compared to the tender estimated cost.

The total Revit – based estimated cost was 652.46 million IQD, and tender – based estimated cost was 679.94 million IQD, Revit calculation have reduced the total estimated cost by 4% compared to the tender estimated cost.

Figure 4.19: Estimated Total Price Revit Vs. Tender

5. CONCLUSIONS AND RECOMMENDATIONS

The main aim of this research is to evaluate the impact of implementation BIM technology on small scale projects, also, it aims to redirect the attention and increase the awareness of companies and stakeholders who deals with small projects.

In this research, a case study of 3-storey building was applied by one of BIM software (Autodesk Revit 2020), 2-D and 3-D drawings was extracted depending on the data used to create the model, some of these drawings was not available with the drawings that was made with Autodesk AutoCAD software. These drawings contain structural and architectural drawings, side views, and sections, without wasting time for drawing each one by hand.

Quantities estimations were obtained from the results of Revit software and compared with the quantities of the tender that were prepared with traditional methods, also the cost of each category was obtained and compared, the results can be abbreviated as the following:

- 37 categories of 70 showed that Revit based quantities are less than tender quantities, while 12 categories showed that showed that Revit based quantities are more than tender based quantities, 3 categories showed nearly the same quantities, the rest 18 categories are fixed and with no quantity estimation.
- Concrete Revit based quantities were less than tender based quantities by with big difference for 9 of 10 of concrete categories.
- Revit based rebar quantities was less than tender based quantities for all rebar categories, but the difference was not too big.
- Revit based quantities for all categories of formwork and 3 of 4 categories of brick wall were more than tender based quantities with big differences.
- For finishes, Revit based quantities for plastering, facade marble tiles, facade marble sweep, floor porcelain, aluminum windows, window's

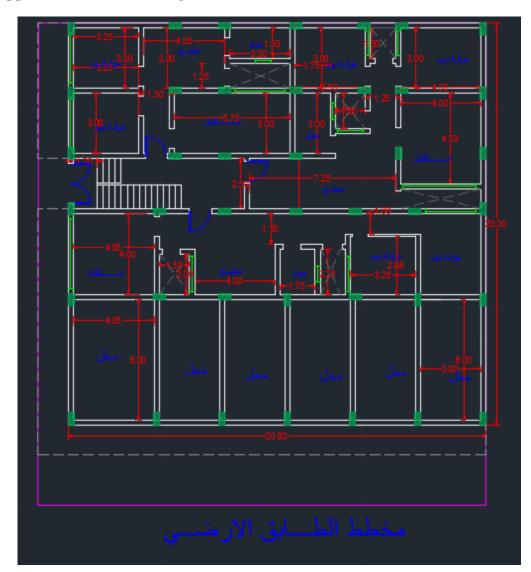
protection, marble skirting, porcelain skirting, and 3 categories of ceramic quantities were less than tender – based quantities.

- The biggest gap was in the quantity of gypsum plastering and paint for 2 of 4 categories each, Revit based quantities were extremely less than tender based quantity.
- The results showed that the total Revit based estimated cost was 652.46 million IQD, and tender based estimated cost was 679.94 million IQD, Revit calculation have reduced the total estimated cost by 4% compared to the total tender estimated cost.
- Also, for finishing price, Revit based estimated cost was 368.17 million IQD, and tender based estimated cost was 392.95 million IQD, Revit calculation have reduced the estimated cost by more than 6% compared to the tender estimated cost for finishing.
- The total price of structure was 284.29 million IQD for Revit based estimation and 287 million IQD for tender – based estimation, without a big difference in the total estimated price for the structure. However, prices for every category are more or less for both estimations, and that have made a kind of equilibrium.
- Determining the most correct material and cost estimation for the project helps contractors and owners to know their budget and reduces the gap between estimated and actual quantities during construction phase.
- The oscillation in quantities, in addition to it effect prices for each category, it could also lead to increase the time of the project.
- The other benefits of BIM which was mentioned in the literature review, included 3 – D rendering, shop drawings generating, building's maintenance, material and cost estimation, interference detection, analytical analyses, reducing time of project delivery, team work friendly, and improving the quality of managing the project.
- Finally, the researcher concludes that BIM technology implementation for small scale construction projects is highly recommended to minimize interferences and saving time, and also the accurate cost estimation, also the

level of awareness to implement this technology by stakeholders should be raised.

Future studies:

- For the future studies the researcher suggest the following:
- Evaluate the feasibility of implementation of bim on small scale construction projects.
- Solving the barriers of using bim for the small companies and making a well organized and full considered formwork for training the design engineers.
- Deeper research on linking architectural, structural, and mep on a workset to minimize interferences and saving time.


REFERENCES

- A. Akbarnezhad, K. Ong, L. Chandra, Z. Lin. (2012). Economic and environmental assessment of deconstruction strategies using building information modeling, Proceedings of Construction Research Congress 2012: Construction Challenges in a Flat World, West Lafayette, USA, 2012, pp. S. 1730–S. 1739.
- **A. Akcamete, B. Akinci, J.H. Garrett Jr.** (2010). Potential utilization of building models for planning maintenance activities, Proceedings of the International Conference on Computing in Civil and Building Engineering (ICCCBE), Nottingham, Britain, 2010.
- Akkaya, D. (2012). Survey on Building Information Modelling in Construction Sector. İstanbul: Yıldız Technical University, Institute of Sciences.
- **B.** Akinci, F. Boukamp, C. Gordon, D. Huber, C. Lyons, K. Park. (2006). A formalism for utilization of sensor systems and integrated project models for active construction quality control, Autom. Constr. 15 (2006) 124–138.
- **B. Becerik-Gerber, F. Jazizadeh, N. Li, G. Calis.** (2012). Application areas and data requirements for BIM-enabled facilities management, J. Constr. Eng. Manag. 138 (2012) 431–442.
- **B. Becerik-Gerber, S. Rice.** (2010). The perceived value of building information modeling in the U.S. building industry, ITcon 15 (2010) 185–201.
- **Burcin, B.G. and R. Samara.** (2010). The Perceived Value of Building Information Modeling in the U.S Building Industries, Journal of Information Technology in Construction.
- **C. Nicolle, C. Cruz.** (2011). Semantic Building Information Model and multimedia for facility management, Web Information Systems and Technologies, Lecture Notes in Business Information Processing 2011. S. 14–S. 29.
- **D. Bryde, M. Broquetas, J.M. Volm.** (20130. The project benefits of Building Information Modeling (BIM), Int. J. Proj. Manag. 31 (2013) 971–980.
- **E. Krygiel, B. Nies.** (2008). Green BIM: Successful Sustainable Design with Building Information Modeling, Wiley Publishing, Indianapolis, Indiana, 2008.
- East, B., & Smith, D. (2016). The United States National Building Information Modeling Standard: The First Decade. In 33rd CIB W78 Information Technology for Construction Conference (CIB W78 2016), Brisbane, Australia.
- Eastman, C. M., Eastman, C., Teicholz, P., Sacks, R., & Liston, K. (2011). BIM handbook: A guide to building information modeling for owners, managers, designers, engineers and contractors. John Wiley & Sons.

- Ernstrom, B., Hanson, D., Hill, D., Clark, J. J., Holder, M. K., Turner, D. N., ... & Barton, T. W. (2006). The contractors' guide to BIM. Associated General Contractors of America.
- **F. Boukamp, B. Akinci.** (2007) Automated processing of construction specifications to support inspection and quality control, Autom. Constr. 17 (2007) 90–106.
- Fazli, A., Fathi, S., Enferadi, M., Fazli, M., Fathi, B. (2014). Appraising effectiveness of Building Information Management (BIM) in project management. Science Direct, Procedia Technology, 16, 1116 – 1125.
- Gao, H., Koch, C., & Wu, Y. (2019). Building information modelling based building energy modelling: A review. Applied energy, 238, 320-343.
- H. Penttilä, M. Rajala, S. Freese. (2007). Building Information modelling of modern historic buildings, eCAADe2007. S. 607–S. 613.
- Hooper, M. (2012). Building Information Modeling Anatomy-An Investigation Into Implementation Prerequisites", Design Methodology, Department of Construction Sciences.
- **J. Cheng, L. Ma.** (2012). A BIM-based system for demolition and renovation waste quantification and planning, Proceedings of the 14th International Conference on computing in Civil and Building Engineering (ICCCBE 2012), Moskow, 2012.
- M. Gray, J. Gray, M. Teo, S. Chi, F. Cheung. (2013). Building Information Modeling, An International Survey, Brisbane, Australia, 2013.
- M. Nepal, S. Staub-French, J. Zhang, M. Lawrence, R. Pottinger. (2008). Deriving construction features from an IFC model, Proceedings of the CSCE 2008 Annual Conference, Quebec, Canada, 2008.
- N. Gu, K. London. (2010). Understanding and facilitating BIM adoption in the AEC industry, Autom. Constr. 19 (2010) 988–999.
- **RICS, RICS**. (2013). BIM Survey Results, The Royal Institute of Charted Surveyors, 2013.
- T. Mill, A. Alt, R. Liias. (2013). Combined 3D building surveying techniques terrestrial laser scanning (TLS) and total station surveying for BIM data management purposes, J. Civ. Eng. Manag. (2013) (First 1-10, Published online: 24 Oct 2013.
- **Teicholz Eastman, Liston Sacks**. (2011). BIM Handbook a guide to building information modeling for owners, managers, designers, engineers and contractors, Aufl, 2, Wiley, Hoboken, 2011.
- V. Singh, N. Gu, X. Wang. (2011). A theoretical framework of a BIM-based multidisciplinary collaboration platform, Autom. Constr. 20 (2011) 134–144
- Vandezande, J., Read, P., & Krygiel, E. (2011). Mastering Autodesk Revit Architecture 2012. John Wiley & Sons.
- Volk, R., Stengel, J., & Schultmann, F. (2014). Building Information Modeling (BIM) for existing buildings Literature review and future needs. Automation in construction, 38, 109-127.

- X. Liu, M. Eybpoosh, B. Akinci. (2012). Developing As-built Building Information Model using construction process history captured by a laser scanner and a camera, Proceedings of Construction Research Congress 2012: Construction Challenges in a Flat World, West Lafayette, USA, 2012.
- **Y. Arayici.** (2008). Towards building information modelling for existing structures, Struct. Surv. 26 (2008) 210–222.
- **Z. Wassouf, M. Egger**. (2006). C. Van Treeck, E. Rank, Produktmodell basierte Simulation des Ressourcenbedarfs von Bauwerken, Bauingenieur 81 (2006).

APPENDICES

Appendix A: CAD Drawings

Figure A.1: Ground Floor's CAD Drawing

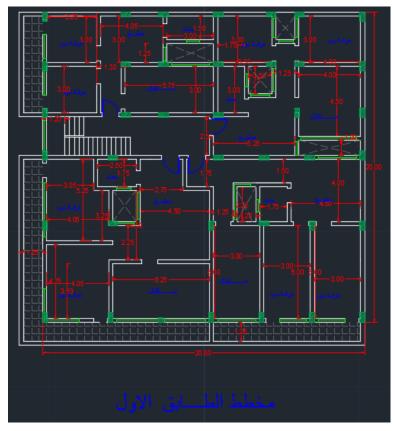


Figure A.2: First Floor's CAD Drawing

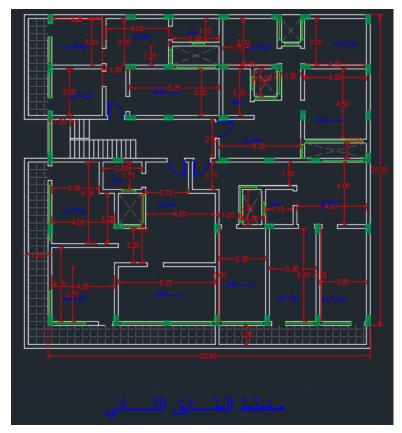


Figure A.3: Second Floor's CAD Drawing

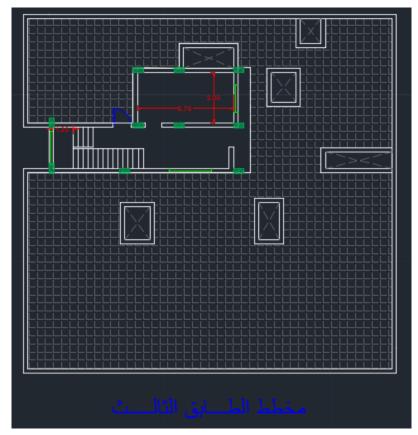


Figure A.4: Third Floor's CAD Drawing

Appendix B: Bills of Quantities (Tender)

N95	رقم المشروع:			خالد للمقاولات والبناء	شركة ال	
: بغداد	موقع المشروع			تصميم - اشراف - تنفيذ		
			I			
	- الهيكل	سالم خضير	ة السيد م	جداول كميات مشروع عمار		
الإجمالي	سعر الوحدة	الكميه	الوحدة	بيان الاعمال	رقع	
3753000	9,000	417	M ³	تجهيز العدد والاليات المناسبة لحفر الارض وحتى الوصول الى التربة الصالحة للتأسيس لتحقيق المقاومة التصميمية بعق لا يقل عن 0.6م من مستوى سطح الأرض ويشمل العمل نزح المياه إن وجدت وتنظيف الحفرة ورشها والحفاظ على جوانب الحفر طبقا للرسومات والمواصفات وتعليمات المهندس المشرف.	1	
4865000	17500	278	M ³	دفن الارض باستخدام السبيس الخابط المندرج وعلى شكل طبقات لاتزيد من 15 - 25 سم مع الرش والحدل جيداً حتى الحصول على تربة متماسكة بنسبة حدل 95%، والقيام بجميع ما يلزم لإنهاء العمل بحسب الرسومات والمواصفات وتعليمات المهندس المشرف.	2	
<u>7370000</u>	<u>110000</u>	67	M ³	تجهيز وتنفيذ كونكريت بسماكة 12سم لقطعة الارض كاملة بإستخدام الأسمنت البورتلاندي مقاوم للاملاح وبمقاومة لا تقل عن 15 ميكا باسكال السعر يشمل أعمال النجارة والرش بالماء وجميع ما يلزم لإنهاء العمل طبقاً للرسومات والمواصفات وتعليمات المهندس المشرف.		
2000000	جملة	جملة	جملة	تجهيز المواد اللازمة لتاسيس انابيب صحيات نوع الامل الشريف بقطر 4",6" مع عمل منهولات وجميع ما يلزم العمل .	2.1	

رقم المشروع: N95				شركة الخالد للمقاولات و البناء		
: بغداد	موقع المشروع: بغداد			صميم - اشراف - تنفيذ		
	- الهيكل	سالم خضير	ة السيد م	جداول كميات مشروع عمار		
الإجمالي	سعر الوحدة	الكميه	الوحدة	بيان الاعمال	ۇقغ	
15600000	1300000	12	طن	تجهيز حديد تسليح اوكراني المنشأ بقطر 16مم ثم القيام باعمال الحدادة بنشر طبقتين علوية وسفلية وباتجاهين ويكون النشر كل 25سم للطبقتين.		
1500000	جملة	جملة		تجهيز المواد الازمة والعدد لاعمال القالب الخشبي باستخدام خشب بلايود روسي وجميع ما يلزم لانهاء العمل طبقاً للرسومات والمواصفات وتعليمات المهندس المشرف.		
26125000	95000	275	M ³	تجهيز وتنفيذ كونكريت بسماكة 60سم للاساس باستخدام الأسمنت البورتلاندي مقاوم للاملاح وبمقاومة لا تقل عن 35ميكا باسكال السعر يشمل أعمال الرش بالماء وجميع ما يلزم لإنهاء العمل طبقاً للرسومات والمواصفات وتعليمات المهندس المشرف.	1.2.1	
2850000	95000	30	M ³	تجهيز وتنفيذ كونكريت لاعمدة الطابق الارضي بإستخدام الأسمنت البور تلاندي الاعتيادي وبمقاومة لا تقل عن 35ميكا باسكال السعر يشمل الرش بالماء وجميع ما يلزم لإنهاء العمل طبقاً للرسومات والمواصفات وتعليمات المهندس المشرف.		
6150000	150000	41	عدد	القيام باعمال الحدادة لاعمدة الطابق الارضي (14شيش قطر 16 ملم للحديد الرئيسي وقطر 10 ملم بمسافات 15ملم للاترية) وتجهيز المواد الازمة والعدد لاعمال القالب الخشبي باستخدام خشب بلايود روسي وجميع ما يلزم لانهاء العمل طبقاً للرسومات والمواصفات وتعليمات المهندس المشرف.		

N95	رقم المشروع:			خالد للمقاولات والبناء	شركة ال	
موقع المشروع: بغداد				تصميم - اشراف – تنفيذ		
	- الهيكل	سالم خضير	ة السيد م	جداول كميات مشروع عمار		
الإجمالي	سعر الوحدة	الكميه	الوحدة	بيان الاعمال	ڦر	
6440000	920000	7.00	طن	تجهيز حديد تسليح اوكراني المنشأ لاعمدة الطابق الارضي بقطر 16مم ,10 ملم مطابق للمواصفات الهندسية ومفحوص مختبريا.	2.2.1	
12635000.00	95000	133.00	M3	تجهيز وتنفيذ كونكريت لسقف وجسور الطابق الارضي بإستخدام الأسمنت البورتلاندي الاعتيادي وبمقاومة لا تقل عن 35ميكا باسكال , يكون سمك السقف 20سم والجسور (30*60) سم السعر يشمل الرش بالماء وجميع ما يلزم لإنهاء العمل طبقاً للرسومات والمواصفات وتعليمات المهندس المشرف		
15600000	1300000	12.00	طن	جهيز حديد تسليح اوكراني المنشأ لسقف وجسور الطابق الارضي بقطر 16مم ,12ملم ,10 ملم مطابق للمواصفات الهندسية ومفحوص مختبريا ثم القيام باعمال الحدادة للسقف بنشر طبقتين و1ملم بمسافات 20 سم بكلا الاتجاهين, و للجسور (7شيش قطر 16 ملم واترية 10ملم بمسافات 30 سم.	3.2.1	
6900000	10000	690.00	m2	تجهيز المواد الازمة والعدد لاعمال القالب الخشبي لسقف وجسور الطابق الارضي باستخدام خشب بلايود روسي وجميع ما يلزم لانهاء العمل طبقاً للرسومات والمواصفات وتعليمات المهندس المشرف.		
4600000	920000	5.00	طن	تجهيز حديد تسليح اوكراني المنشأ لاعمدة الطابق الاول بقطر 16مم ,10 ملم مطابق للمواصفات الهندسية ومفحوص مختبريا.		

N95	رقم المشروع:			خالد للمقاو لات و البناء	شركة ال	
موقع المشروع: بغداد				تصميم - اشراف – تنفيذ		
	- الهيكل	سالم خضير	ة السيد م	جداول كميات مشروع عمار		
الإجمالي	سعر الوحدة	الكميه	الوحدة	بيان الاعمال	رقع	
5850000	150000	39.00	عدد	القيام باعمال الحدادة لاعمدة الطابق الاول (14شيش قطر 16 ملم للحديد الرئيسي وقطر 10 ملم بمسافات 15ملم للاترية) وتجهيز المواد الازمة والعدد لاعمال القالب الخشبي باستخدام خشب بلايود روسي وجميع ما يلزم لانهاء العمل طبقاً للرسومات والمواصفات وتعليمات المهندس المشرف.		
1995000	95000	21.00	m3	تجهيز وتنفيذ كونكريت لاعمدة الطابق الاول بإستخدام الأسمنت البورتلاندي الاعتيادي وبمقاومة لا تقل عن 35ميكا باسكال السعر يشمل الرش بالماء وجميع ما يلزم لإنهاء العمل طبقاً للرسومات والمواصفات وتعليمات المهندس المشرف		
6900000	10000	690.00	m2	تجهيز المواد الازمة والعدد لاعمال القالب الخشبي لسقف وجسور الطابق الاول باستخدام خشب بلايود روسي وجميع ما يلزم لانهاء العمل طبقاً للرسومات والمواصفات وتعليمات المهندس المشرف		
15600000	1300000	12.00	طن	جهيز حديد تسليح اوكراني المنشأ لسقف وجسور الطابق الاول بقطر 16م ,12ملم 10, ملم مطابق للمواصفات الهندسية ومفحوص مختبريا ثم القيام باعمال الحدادة للسقف بنشر طبقتين 12ملم بمسافات 20 سم بكلا الاتجاهين, و للجسور (7شيش قطر 16 ملم واترية 10ملم بمسافات 30 سم.		

رقم المشروع: N95			شركة الخالد للمقاولات والبناء			
: بغداد	موقع المشروع: بغداد			تصميم - اشراف – تنفيذ		
	- ا لهيكل	سالم خضير	ة السيد م	جداول كميات مشروع عمار		
الإجمالي	سعر الوحدة	الكميه	الوحدة	بيان الاعمال	ۇھر	
12635000	95000	133.00	m3	تجهيز وتنفيذ كونكريت لسقف وجسور الطابق الاول بإستخدام الأسمنت البورتلاندي الاعتيادي وبمقاومة لا تقل عن 35ميكا باسكال , يكون سمك السقف 20سم والجسور (30*60) سم السعر يشمل الرش بالماء وجميع ما يلزم لإنهاء العمل طبقاً للرسومات والمواصفات وتعليمات المهندس المشرف		
4600000	920000	5.00	طن	تجهيز حديد تسليح اوكراني المنشأ لاعمدة الطابق الثاني بقطر 16م ,10 ملم مطابق للمواصفات الهندسية ومفحوص مختبريا.		
5850000	150000	39.00	عدد	القيام باعمال الحدادة لاعمدة الطابق الثاني (14شيش قطر 16 ملم للحديد الرئيسي وقطر 10 ملم بمسافات 15ملم للاترية) وتجهيز المواد الازمة والعدد لاعمال القالب الخشبي باستخدام خشب بلايود روسي وجميع ما يلزم لانهاء العمل طبقاً للرسومات والمواصفات وتعليمات المهندس المشرف.		
1995000	95000	21.00	m3	تجهيز وتنفيذ كونكريت لاعمدة الطابق الثاني بإستخدام الأسمنت البور تلاندي الاعتيادي وبمقاومة لا تقل عن 35ميكا باسكال السعر يشمل الرش بالماء وجميع ما يلزم لإنهاء العمل طبقاً للرسومات والمواصفات وتعليمات المهندس		

N95	رقم المشروع:			خالد للمقاولات والبناء	شركة ال
: بغداد	موقع المشروع: بغداد			اشراف _ تنفيد	تصميم ـ
	- الهيكل	سالم خضير	ة السيد م	جداول كميات مشروع عمار	
الإجمالي	سعر الوحدة	الكميه	الوحدة	بيان الاعمال	ۇھم
7100000	10000	710.00	m2	تجهيز المواد الازمة والعدد لاعمال القالب الخشبي لسقف وجسور الطابق الثاني باستخدام خشب بلايود روسي وجميع ما يلزم لانهاء العمل طبقاً للرسومات والمواصفات وتعليمات المهندس المشرف.	
16250000	1300000	12.50	طن	جهيز حديد تسليح اوكراني المنشأ لسقف وجسور الطابق الثاني بقطر 16مم, 12ملم 10, ملم مطابق للمواصفات الهندسية ومفحوص مختبريا ثم القيام باعمال الحدادة للسقف بنشر طبقتين 12ملم بمسافات 20 سم بكلا الاتجاهين, و للجسور (7شيش قطر 16 ملم واترية 10ملم بمسافات 30 سم.	
12920000	95000	136.00	m3	تجهيز وتنفيذ كونكريت لسقف وجسور الطابق الثاني بإستخدام الأسمنت البورتلاندي الاعتيادي وبمقاومة لا تقل عن 35ميكا باسكال , يكون سمك السقف 20سم والجسور (30*60) سم السعر يشمل الرش بالماء وجميع ما يلزم لإنهاء العمل طبقاً للرسومات والمواصفات وتعليمات المهندس المشرف	
1104000	920000	1.20	طن	تجهيز حديد تسليح اوكراني المنشأ لاعمدة الطابق الثالث بقطر 16مم ,10 ملم مطابق للمواصفات الهندسية ومفحوص مختبريا.	

N95	رقم المشروع:			خالد للمقاو لات و البناء	شركة ال	
: بغداد	موقع المشروع: بغداد			صميم - اشراف – تنفيذ		
	- الهيكل	سالم خضير	ة السيد س	جداول كميات مشروع عمار		
الإجمالي	سعر الوحدة	الكميه	الوحدة	بيان الاعمال	أهر	
1500000	150000	10.00	عدد	القيام باعمال الحدادة لاعمدة الطابق الثالث (14شيش قطر 16 ملم للحديد الرئيسي وقطر 10 ملم بمسافات 15ملم للاترية) وتجهيز المواد الازمة والعدد لاعمال القالب الخشبي باستخدام خشب بلايود روسي وجميع ما يلزم لانهاء العمل طبقاً للرسومات والمواصفات وتعليمات المهندس المشرف.		
475000	95000	5.00	m3	تجهيز وتنفيذ كونكريت لاعمدة الطابق الثالث بإستخدام الأسمنت البور تلاندي الاعتيادي وبمقاومة لا تقل عن 35ميكا باسكال السعر يشمل الرش بالماء وجميع ما يلزم لإنهاء العمل طبقاً للرسومات والمواصفات وتعليمات المهندس المشرف		
950000	10000	95.00	m2	تجهيز المواد الازمة والعدد لاعمال القالب الخشبي لسقف وجسور الطابق الثالث باستخدام خشب بلايود روسي وجميع ما يلزم لانهاء العمل طبقاً للرسومات والمواصفات وتعليمات المهندس المشرف		
2600000	1300000	2.00	طن	جهيز حديد تسليح اوكراني المنشأ لسقف وجسور الطابق الثالث بقطر 16مم ,12ملم ,10 ملم مطابق للمواصفات الهندسية ومفحوص مختبريا ثم القيام باعمال الحدادة للسقف بنشر طبقتين 21ملم بمسافات 20 سم بكلا الاتجاهين, و للجسور (7شيش قطر 16 ملم واترية 10ملم بمسافات 30 سم.		

N95	رقم المشروع:			فالد للمقاولات والبناء	شركة ال
موقع المشروع: بغداد				اشراف _ تنفيذ	تصميم ـ
	- الهيكل	سالم خضير	ة السيد م	جداول كميات مشروع عمار	
الإجمالي	سعر الوحدة	الكميه	الوحدة	بيان الاعمال	رقع
1615000	95000	17.00	m3	تجهيز وتنفيذ كونكريت لسقف وجسور الطابق الثالث بإستخدام الأسمنت البورتلاندي الاعتيادي وبمقاومة لا تقل عن 35ميكا باسكال , يكون سمك السقف 20سم والجسور (30%60) سم السعر يشمل الرش بالماء وجميع ما يلزم لإنهاء العمل طبقاً للرسومات والمواصفات وتعليمات المهندس المشرف.	
1530000	9000	170.00	М	تسقيط موقع الجدران والقيام بأعمال القالب الخشبي لساف مانع الرطوبة (البادلو) بسمك 15سم ثم القيام بالصب باستخدام الكونكريت بنسبة 1:2:4 المخلوط بمادة السيكا المانعة للرطوبة (غير نفاذة).	
25575000	165000	155.00	m3	و تجهيز المواد والعدد اللازمة لأعمال البناء للطابق الارضي بالطابوق جمهوري اصفر من النوع الجيد ومونة السمنت والرمل بنسبة خلط (1-3) وحسب الخارطة المتفق عليها والمرفقة مع جدول الكميات	
17820000	165000	108.00	m3	و تجهيز المواد والعدد اللازمة لأعمال البناء للطابق الاول بالطابوق جمهوري اصفر من النوع الجيد ومونة السمنت والرمل بنسبة خلط (1-3) وحسب الخارطة المتفق عليها والمرفقة مع جدول الكميات	

NI05	رقم المشروع:			فالد للمقاو لات والبناء	شر كة ال
105 - 205-201 - 25					سرے ،ے
: بغداد	موقع المشروع			اشراف - تنفيذ	تصميم ـ
	- الهيكل	سالم خضير	ة السيد م	جداول كميات مشروع عمار	
الإجمالي	سعر الوحدة	الكميه	الوحدة	بيان الاعمال	رقع
17820000	165000	108.00	m3	و تجهيز المواد والعدد اللازمة لأعمال البناء للطابق الثاني بالطابوق جمهوري اصفر من النوع الجيد ومونة السمنت والرمل بنسبة خلط (1-3) وحسب الخارطة المتفق عليها والمرفقة مع جدول الكميات	
7920000	165000	48.00	m3	و تجهيز المواد والعدد اللازمة لأعمال البناء للطابق الثالث وستارة السطح (بارتفاع 1م) بالطابوق جمهوري اصفر من النوع الجيد ومونة السمنت والرمل بنسبة خلط (1-3) وحسب الخارطة المتفق عليها والمرفقة مع جدول الكميات	
286992000		1	:	المجموع	

N95	قم المشروع:	ر		خالد للمقاو لات والبناء	شركة ال
: بغداد	وقع المشروع	A		اشراف _ تنفيذ	تصميم ـ
	اءات	نىير - الانھ	د سالم خد	جداول كميات مشروع عمارة السي	
الإجمالي	سعر الوحدة	الكميه	الوحدة	بيان الاعمال	رقع
11340000	27000	420	M2	تجهيز المواد والقيام باعمال التسطيح باستعمال الشتايكر باستخدام فلانكوت وفوم سمك 5 سم مع ملئ المفاصل باستخدام الماستك وجميع ما يتطلبه العمل	1
				أعمال البياض بالجص المحلي عمل مساطر وزن ثم البياض بالجص سمك 2سم والانهاء بطبقة من البورك	2
21680000	16000	1355.0	M2	الطابق الارضي	1.3
19840000	16000	1240	M2	الطابق الاول	1.1.3
19840000	16000	1240	M2	الثاني	
2560000	16000	160	M2	الثالث	
			M2	اللبخ الصقيل	
14190000	11000	1290	M2	المناور وستائر السطح وخارج البيتونة لبخ ونثر	3.1.3
				الواجهة (مرمر ابيض+ كوبلنات)	
24375000	75000	325	M2	متر مربع مرمر	
22750000	35000	650	М	متر طول کوبلنات	
				السير اميك الجداري: سير اميك هندي, لبخ + مادة لاصقة	
10400000	40000	260	M2	ارضي	
12600000	40000	315	M2	اول	

Table B.2: Tender and Bills of Quantities (Finishing)

N95 :	رقم المشروع			الد للمقاو لات و البناء	شركة الخ
ع: بغداد	موقع المشروع	1		اشراف _ تنفيد	تصميم -
	باءات	ير - الانھ	سالم خض	جداول كميات مشروع عمارة السيد	
الإجمالي	سعر الوحدة	الكميه	الوحد ة	بيان الاعمال	أهر
12600000	40000	315	M2	ثاني	
				الصبغ الداخلي	
8130000	6000	1355	M2	ارضي	
7440000	6000	1240	M2	اول	
7440000	6000	1240	M2	ثاني	
960000	6000	160	M2	ثلث	
				الارضيات كرستة وعمل	
14625000	45000	325	M2	الارضي مرمر	
26240000	32000	820	M2	باقي الطوابق بورسلين	
3400000	200000	17	عدد	ارضيات الحمامات والمناور	
3825000	75000	51	שנו	الدايات مرمر	
				ازارة	
1950000	7500	260	М	ارضي	
3600000	6000	600	М	باقي الطوابق	
1300000	1300000	1	عدد	باب حديد مدخل رئيسي	
12100000	1100000	11	عدد	ابواب رئيسية مداخل الشقق	
				ابواب داخلية	
8500000	250000	34	عدد	عرض 1 متر للغرف	

Table B.2: (Cont.) Tender and Bills of Quantities (Finishing)

N95 :8	رقم المشروع			شركة الخالد للمقاولات والبناء					
ع: بغداد	موقع المشرو	1		اشراف – تنفيذ	تصميم ـ				
	باءات	ير - الانې	سالم خضر	جداول كميات مشروع عمارة السيد					
الإجمالي	سعر الوحدة	الكميه	الوحد ة	بيان الاعمال	رقع				
2200000	200000	11	שרר	عرض 90 حمامات					
41600000	160000	260	M2	شبابيك المنيوم					
2100000	50000	42	M2	كتائب شبابيك					
11115000	95000	117	М	محجر المنيوم					
33500000	50000	670	שננ	الكهربائيات					
16000000			قطعي	الصحيات					
				تراکیب صحیات					
1980000	180000	11	שננ	مقعد غربي					
2420000	220000	11	שנו	مغسلة					
3850000	350000	11	عدد	شاور					
6500000			قطعي	اجور حراسة+عمال تنظيف					
392950000				المجموع:					

Table B.2: (Cont.) Tender and Bills of Quantities (Finishing)

RESUME

EDUCATION:

- **Bachelor** : 2017, University of Mustansiriyah, Faculty of Engineering, Civil Engineering Department.
- Master : 2021, Istanbul Gedik University, Institute of science and technology, Engineering Management (English) Program.

PROFESSIONAL EXPERIENCE AND REWARDS PUBLICATIONS/PRESENTATIONS:

Ghaith R. Abdulghani and Ahmed Güllü, 2021. Building Information Modelling (BIM): Benefits for Small Scale Construction Industry. International Journal of Engineering and Management Research (IJEMR), Volume-11, Issue-4 (August 2021).

Ghaith R. Abdulghani, Zainab H. Mahdi, Mays R. Abdulghani, M.M. Kadhum, Investigation about the optimum alternative of polypropylene fibers in conventional concrete. Journal of Engineering Science and Technology (JESTEC), Volume 17, Issue-4 (August 2022).